Molar Enthalpy Formula for the Specialized Pöschl-Teller Oscillator

Main Article Content

Yusuf Ibrahim
P. P. Notani
J. U. Ojar
P. U. Tanko
A. A. Mshelia
E. S. Eyube

Abstract

In this study, an existing equation for the canonical partition function of the specialized Pöschl-Teller oscillator (SPTO) was used to develop analytical formula for the prediction of molar enthalpy of diatomic substances. The equation was used to analyze the thermodynamic property of the ground state BBr, ICl, P2, and PCl molecules. The average absolute deviation (σave) of predicted data from the observed data of the molecules was employed as accuracy indicator. The σave obtained are 1.0945%, 0.5312%, 0.8178% and 0.6793% for the BBr, ICl, P2, and PCl molecules, respectively. The results predicted with the present formulation for molar enthalpy is in good agreement with the data reported in the National Institute of Standards and Technology (NIST) database. The data generated in this study could be useful in the areas of Solid-State Physics, Chemical Physics, Chemical Engineering, and Atomic and Molecular Physics.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ibrahim, Y., Notani, P. P., Ojar, J. U., Tanko, P. U., Mshelia, A. A., & Eyube, E. S. (2023). Molar Enthalpy Formula for the Specialized Pöschl-Teller Oscillator. Nigerian Journal of Physics, 32(1), 154–159. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/33
Section
Articles

References

Bhattacharjee, R., and Chattopadhyaya, S. (2017). Effects of Doping of Calcium Atom(s) on Structural, Electronic and Optical Properties of Binary Strontium Chalcogenides – A Theoretical Investigation Using DFT Based FP-LAPW Methodology. Solid State Sci. 71, 92. https://doi.org/10.1016/j.solidstatesciences.2017.06.010

Bu, Y. (1995). Theoretical Inner-Sphere Reorganization Energies of Gaseous Diatomic Molecules from Vibrational Spectroscopic Data. J. Phys. Chem. 99, 11650. https://doi.org/10.1021/j100030a005

Coxon, J.A., Wicramaaratchi, M.A. (1980). The A 3Π (1) → X 1Σ+ Emission Spectrum of ICl in the Near Infrared: Rotational Analysis of Bands in the ν′ = 0, 1, 2, 3, 4, Propagations and Molecular Constants for the X 1Σ+ and A 3Π (1) States by Merging with Absorption Data. J. Mol. Spectrosc. 79, 380 https://doi.org/10.1016/0022-2852(80)90220-9

Eyube, E.S., Notani, P.P., Dlama, Y., Omugbe, E., Onate, C.A., Okon, I.B., Nyam, G.G., Jabil, Y.Y. and Izam, M.M. (2022a). Isobaric Molar Heat Capacity Model for the Improved Tietz Potential. Int. J. Quantum Chem. 123, e27040. https://doi.org/10.1002/qua.27040

Eyube, E.S. (2022b). Entropy and Gibbs Free Energy Equations for the Specialized Pöschl-Teller Potential. Eur. Phys. J. Plus 137, 760. https://doi.org/10.1140/epjp/s13360-022-02931-0

Eyube, E.S. (2022c). Prediction of Thermal Properties of Phosphorus Dimer – The Analytical Approach. Chem. Phys. Lett. 801, 139702.

Gordillo-Vázquez, F. J., and Kunc, J. A. (1998). Statistical–Mechanical Calculations of Thermal Properties of Diatomic Gases. J. Appl. Phys. 84, 4693 https://doi.org/10.1063/1.368712

Hunt, N.T., Fan, W.Y., Liu, Z., and Davies, P.B. (1998). Infrared Diode Laser Spectroscopy of Fundamental and Hot Bands of BBr (X 1Σ+). J. Mol. Spectrosc. 191, 326. https://doi.org/10.1006/jmsp.1998.7632

Ikot, A. N., Okorie, U. S., Osobonye, G., Amadi, P. O., Edet, C. O., Sithole, M. J., Rampho, G.J., Sever, R. (2020). Superstatistics of Schrödinger Equation with Pseudo-Harmonic Potential in External Magnetic and Aharanov-Bohm Fields. Heliyon, 6, e03738. https://doi.org/10.1016/j.heliyon.2020.e03738

Jia C.S., Wang, C.W., Zhang, L.H., Peng, X.L., Tang, H.M., and Zeng, R. (2018). Enthalpy of Gaseous Phosphorus Dimer. Chem. Eng. Sci. 183, 26. https://doi.org/10.1016/j.ces.2018.03.009

Jiang, R., Jia, C.S., Wang, Q., Peng, X.L., and Zhang, L.H. (2019). Prediction of Enthalpy for the Gases CO, HCl, and BF. Chem. Phys. Lett. 715, 186. https://doi.org/10.1016/j.cplett.2018.11.044

National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2017) https://doi.org/10.18434/T42S31

Rojas-Briseño, J. G., Miranda-Pedraza, G. L., and Martínez-Orozco, J. C. (2016). Exciton Binding Energy in Coupled Double Zinc Blende GaN/InGaN Quantum Well. Phys. Status Solidi B 254, 1600461. https://doi.org/10.1002/pssb.201600461

Tang, B. Jia, C.S. (2017). Relativistic Spinless Rotation-Vibration Energies of Carbon Monoxide. Eur. Phys. J. Plus 132, 375. https://doi.org/10.1140/epjp/i2017-11657-7

Varshni, Y. P. (1957). Comparative Study of Potential Energy Functions for Diatomic Molecules. Rev. Mod. Phys., 29, 664. https://doi.org/10.1103/RevModPhys.29.664

Zhang, X, Yan, P., Li, R., Gai, Z., Liang, G., Xu, H., and Yan, B. (2016). Extensive Spin-Orbit Multi-Reference Computations on the Excited States of the Phosphorus Monochloride Molecule. J. Quant. Spectrosc. Radiat. Transf. 180, 154. https://doi.org/10.1016/j.jqsrt.2016.05.003

Zhang, W., Yang, Q., Xia, M., Bai, W., Wang, P., Gao, X., Gong, X., Feng, B., Gao, L., Zhou, M. and Gao, J. (2019). Effects of Phosphate Fertilizer on the Physicochemical Properties of Tartary Buckwheat. Food Chem. 307, 125543. https://doi.org/10.1016/j.foodchem.2019.125543

Zhang, L., Song, B., Liu, R., Zhao, A., Zhang, J., Zhuo, L., Tang, G., and Shi, Y. (2020). Effects of Structural Parameters on the Poisson’s Ratio and Compressive Modulus of 2D Pentamode Structures Fabricated by Selective Laser Melting. Eng. 6, 56. https://doi.org/10.1016/j.eng.2019.06.009