Investigation of Impacts of Annealing on the Properties of Poly (3,4-ethylene dioxythiophene)/poly (styrene sulfonate) (PEDOT:PSS) Films
Main Article Content
Abstract
Poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS) holds a promise in the electronics and optoelectronics world owing to its promising electrical conductivity, exciting optical transparency, and improved structural network. It has found diverse applications in various technological fields and electronics devices, such as photovoltaics devices, light-emitting diodes, and photodiodes. However, the optical, surface morphology and structural properties of PEDOT:PSS films are significantly influenced by post-treatment processes, among which annealing plays a vital role. Annealing influences the surface property, phase separation, and molecular orderliness of PEDOT:PSS films, which invariably impacts their charge transport and optical behaviours. In this study, we evaluate the effects of thermal treatment on the optical, structural, and surface morphology properties of poly(3,4-ethylenedioxythiophene/poly styrene sulfonate) (PEDOT:PSS) thin film particularly for solar energy conversion application. The optical, structural, and surface morphology properties of PEDOT:PSS films as a function of annealing temperatures were studied by UV - Visible spectroscopy, X-ray diffraction, and scanning electron microscopy techniques respectively. An increase in annealing temperature improves the photons transmittance characteristic of the films. The X-ray diffraction pattern of the annealed film exhibits slight markedly improvement in the peak intensity suggesting improvement in the order of molecular structure and the SEM images reveals an increase in surface roughness of the annealed films improving the pathway for charge carrier mobility. These results highlight the significance of annealing treatments on the characteristic performance of PEDOT:PSS films for diverse electronic applications.
Downloads
Article Details
References
Alemu, D., Wei, H.-Y., Ho, K.-C., & Chu, C.-W. (2012). Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & Environmental Science, 5(11), 96629671. https://doi.org/10.1039/C2EE22595F
Carter, J. L., Kelly, C. A., & Jenkins, M. J. (2023). Processing optimization of PEDOT: PSS and PEDOT: PSS/Tween 80 films. Polymer Journal, 55(3), 253-260. https://doi.org/10.1038/s41428-022-00740-x
Chien, H., Plzl, M., Koller, G., Challinger, S., Fairbairn, C., Baikie, I., Friedel, B. (2017). Effects of hole-transport layer homogeneity in organic solar cells A multi-length scale study. Surfaces and Interfaces, 6, 7280. https://doi.org/10.1016/j.surfin.2016.11.008
Cruz-Cruz, I., Reyes-Reyes, M., Aguilar-Frutis, M. A., Rodriguez, A. G., & Lpez-Sandoval, R. (2010). Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT: PSS thin films. Synthetic Metals, 160(1314), 15011506. https://doi.org/10.1016/j.synthmet.2010.05.010
Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U., & Reuter, K. (2010). PEDOT: principles and applications of an intrinsically conductive polymer. CRC press.
Friedel, B., Keivanidis, P. E., Brenner, T. J. K., Abrusci, A., Mcneill, C. R., Friend, R. H., & Greenham, N. C. (2009). Effects of Layer Thickness and Annealing of PEDOT: PSS Layers in Organic Photodetectors, 67416747. https://doi.org/10.1021/ma901182u
Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Lgdlund, M. (1999). Electroluminescence in conjugated polymers. Nature, 397(6715), 121128. https://doi.org/10.1038/16393
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., & Reynolds, J. R. (2000). Poly (3,4ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced materials, 12(7), 481-494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3C481::AID-ADMA481%3E3.0.CO;2-C
Heywang, G., & Jonas, F. (1992). Poly (alkylenedioxythiophene) snew, very stable conducting polymers. Wiley Online Library. https://doi.org/10.1002/adma.19920040213
Hu, Z., Zhang, J., Hao, Z., & Zhao, Y. (2011). Influence of doped PEDOT: PSS on the performance of polymer solar cells. Solar Energy Materials and Solar Cells, 95(10), 2763-2767. https://doi.org/10.1016/j.solmat.2011.04.040
Hwang, J., Amy, F., & Kahn, A. (2006). Spectroscopic study on sputtered PEDOT PSS: Role of surface PSS layer. Organic electronics, 7(5), 387-396. https://doi.org/10.1016/j.orgel.2006.04.005
Jnsson, S. K. M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Van Der Gon, A. W. D., Fahlman, M. (2003). The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)polystyrenesulfonic acid (PEDOTPSS) films. Synthetic Metals, 139(1), 110. https://doi.org/10.1016/S0379-6779(02)01259-6
Kaukauskas, V., Arlauskas, A., Pranaitis, M., Krupka, O., Kajzar, F., Essaidi, Z., & Sahraoui, B. (2010). Thin Films of DNA: PEDOT-PSSElectrical and Optical Properties. Molecular Crystals and Liquid Crystals, 522(1), 203503. https://doi.org/10.1080/15421401003724167
Kim, J. Y., Jung, J. H., Lee, D. E., & Joo, J. (2002). Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126(23), 311316. https://doi.org/10.1016/S0379-6779(01)00576-8
Kim, Y.-K., Shin, M.-J., & Kim, H.-J. (2008). Annealing temperature effect of hole-collecting polymeric nanolayer in polymer solar cells. Macromolecular Research, 16(3), 185188. https://dx.doi.org/10.1007/BF03218850
Kim, Y. H., Sachse, C., Machala, M. L., May, C., Mller-meskamp, L., & Leo, K. (2011). Highly Conductive PEDOT: PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells, 10761081. https://doi.org/10.1002/adfm.201002290
Kirchmeyer, S., & Reuter, K. (2005). Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). Journal of Materials Chemistry, 15(21), 20772088. https://doi.org/10.1039/B417803N
Koidis, C., Logothetidis, S., Kapnopoulos, C., Karagiannidis, P. G., Laskarakis, A., & Hastas, N. A. (2011). Substrate treatment and drying conditions effect on the properties of roll-to-roll gravure printed PEDOT: PSS thin films. Materials Science and Engineering: B, 176(19), 1556-1561. https://doi.org/10.1016/j.mseb.2011.03.007
Kurukavak, . K., & Polat, S. (2020). Influence of the volume of EGME-DMSO mixed co-solvent doping on the characteristics of PEDOT: PSS and their application in polymer solar cells. Polymers and Polymer Composites, 0967391120963470. https://doi.org/10.1177/0967391120963470
Lee, J. H., Shin, H. S., Na, S. I., & Kim, H. K. (2013). Transparent and flexible PEDOT: PSS electrodes passivated by thin IZTO film using plasma-damage free linear facing target sputtering for flexible organic solar cells. Solar energy materials and solar cells, 109, 192-198. https://doi.org/10.1016/j.solmat.2012.10.015
Litzov, I., & Brabec, C. J. (2013). Development of efficient and stable inverted bulk heterojunction (BHJ) solar cells using different metal oxide interfaces. Materials, 6(12), 5796-5820. https://doi.org/10.3390/ma6125796
Nardes, A. M., Kemerink, M., De Kok, M. M., Vinken, E., Maturova, K., & Janssen, R. A. J. (2008). Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Organic Electronics, 9(5), 727734. https://doi.org/10.1016/j.orgel.2008.05.006
Ouyang, J., Chu, C., Chen, F., Xu, Q., & Yang, Y. (2005). Highconductivity poly (3, 4ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices. Advanced Functional Materials, 15(2), 203208. https://doi.org/10.1002/adfm.200400016
Park, H., Shi, Y., & Kong, J. (2013). Application of solvent modified PEDOT: PSS to graphene electrodes in organic solar cells. Nanoscale, 5(19), 8934-8939. https://doi.org/10.1039/C3NR00611E
Pingree, L. S. C., MacLeod, B. A., & Ginger, D. S. (2008). The changing face of PEDOT: PSS films: substrate, bias, and processing effects on vertical charge transport. The Journal of Physical Chemistry C, 112(21), 79227927. https://doi.org/10.1021/jp711838h
Sivakumar, G., Pratyusha, T., Gupta, D., & Shen, W. (2017). Doping of hole transport layer PEDOT: PSS with pentacene for PCDTBT: PCBM based organic solar cells. Materials Today: Proceedings, 4(7), 68146819. https://doi.org/10.1016/j.matpr.2017.07.008
Thomas, J. P., Srivastava, S., Zhao, L., Abd-Ellah, M., McGillivray, D., Kang, J. S., Leung, K. T. (2015). Reversible structural transformation and enhanced performance of PEDOT: PSS-based hybrid solar cells driven by light intensity. ACS Applied Materials & Interfaces, 7(14), 74667470. https://doi.org/10.1021/acsami.5b01252
Vzquez-Lpez, A., Yaseen, A., Maestre, D., Ramrez-Castellanos, J., Marstein, E. S., Karazhanov, S. Z., & Cremades, A. (2020). Synergetic improvement of stability and conductivity of hybrid composites formed by PEDOT: PSS and SnO nanoparticles. Molecules, 25(3), 695. https://doi.org/10.3390/molecules25030695
Wang, T., Qi, Y., Xu, J., Hu, X., & Chen, P. (2005). Effects of poly (ethylene glycol) on electrical conductivity of poly (3, 4-ethylenedioxythiophene)poly (styrenesulfonic acid) film. Applied Surface Science, 250(14), 188194. https://doi.org/10.1016/j.apsusc.2004.12.051
Yang, X. H., Jaiser, F., Stiller, B., Neher, D., Galbrecht, F., & Scherf, U. (2006). Efficient polymer electrophosphorescent devices with interfacial layers. Advanced Functional Materials, 16(16), 21562162. https://doi.org/10.1002/adfm.200500834
Yun, D. J., Jung, J., Sung, Y. M., Ra, H., Kim, J. M., Chung, J., ... & Jang, J. (2020). InSitu Photoelectron Spectroscopy Study on the Air Degradation of PEDOT: PSS in Terms of Electrical and Thermoelectric Properties. Advanced Electronic Materials, 6(11), 2000620.