INVESTIGATION OF DENDRIMERS AS LIGHT HARVESTING AGENTS
Main Article Content
Abstract
Dendritic molecules are well suited materials for trapping photon energy, which can be converted back to visible light. Their tree-like structure acts as an energy gradient for the funneling of energy while their periphery provides large absorbing units, resulting in high probability of photon capture and the closeness of the periphery to the core makes energy transfer highly efficient. Using dendritic molecular samples from a Michigan-based company – Dendritic Nano-Technology (DNT), spectroscopic techniques were used to investigate the light harvesting properties of dendrimers. Pure dye samples dissolved in alcohol were mixed with dendrimers. The mixture was excited with 1064 nm Nd:YAG laser and the resulting fluorescent signal collected. Preliminary investigation shows that while dendrimers themselves do not produce fluorescence, they act as suitable encapsulating agents for dye molecules. arising from the 3-photon absorption that resulted in the enhancement of dye fluorescence. Furthermore, while stilbene dye could produce fluorescence by direct 3-photon absorption, other dyes species like BDN and Q5 needed the dendrimer environment for enhanced fluorescence activities, while other dyes like LDS 765 showed a tendency towards lasing at low laser energy. This encapsulating feature suggests that dendrimers have possible application in the production of drug capsules
Downloads
Article Details
References
Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., … Pashaei-Asl, R. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 1–10. https://doi.org/10.1186/1556-276X-9-247
Adronov, A., Gilat, S. L., Fréchet, J. M. J., Ohta, K., Neuwahl, F. V. R., & Fleming, G. R. (2000). Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers. Journal of the American Chemical Society, 122(6), 1175–1185. https://doi.org/10.1021/ja993272e
Balagani, P., Chandiran, S., B.Bhavya, Sravanthi.U, & Manubolu, S. (2011). Dendrimer: a complete drug carrier. International Journal of Pharmacy Review & Research, 1, 25.
Bielinska, A., Kukowska-Latallo, J. F., Johnson, J., Tomalia, D. A., & Baker Jr, J. R. (1996). Regulation of in vitro Gene Expression Using Antisense Oligonucleotides or Antisense Expression Plasmids Transfected Using Starburst PAMAM Dendrimers . Nucleic Acids Research, 24(11), 2176–2182. https://doi.org/10.1093/nar/24.11.2176
Bourne, M. W., Margerun, L., Hylton, N., Campion, B., Lai, J.-J., Derugin, N., & Higgins, C. B. (1996). Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time of flight magnetic resonance angiography of the body. Journal of Magnetic Resonance Imaging, 6(2), 305–310. https://doi.org/10.1002/jmri.1880060209
Bradshaw, D. S., & Andrews, D. L. (2011). Mechanisms of Light Energy Harvesting in Dendrimers and Hyperbranched Polymers. Polymers, 3(4), 2053–2077. https://doi.org/10.3390/polym3042053
Buhleier, E., Wehner, W., & Vögtle, F. (1978). “Cascade”- And “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis (Germany), 1978(2), 155–158. https://doi.org/10.1055/s-1978-24702
Feuerbacher, N., & Vögtle, F. (1998). Iterative Synthesis in Organic Chemistry (pp. 1–18). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69779-9_1
Gilat, S. L., Adronov, A., & Fréchet, J. M. J. (1999). Light Harvesting and Energy Transfer in Novel Convergently Constructed Dendrimers. Angewandte Chemie International Edition, 38(10), 1422–1427. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1422::AID-ANIE1422>3.0.CO;2-V
Hawthorne, M. F. (1993). The Role of Chemistry in the Development of Boron Neutron Capture Therapy of Cancer. Angewandte Chemie International Edition in English, 32(7), 950–984. https://doi.org/10.1002/anie.199309501
Janaszewska, A., Lazniewska, J., Trzepiński, P., Marcinkowska, M., & Klajnert-Maculewicz, B. (2019, August 1). Cytotoxicity of dendrimers. Biomolecules. MDPI AG. https://doi.org/10.3390/biom9080330
Jansen, J. F. G. A., de Brabander-van den Berg, E. M. M., & Meijer, E. W. (1994). Encapsulation of Guest Molecules into a Dendritic Box. Science, 266(5188).
Jansen, J. F. G. A., Meijer, E. W., & de Brabander-van den Berg, E. M. M. (1995). The Dendritic Box: Shape-Selective Liberation of Encapsulated Guests. Journal of the American Chemical Society, 117(15), 4417–4418. https://doi.org/10.1021/ja00120a032
Jiang, D. L., & Aida, T. (1997). Photoisomerization in dendrimers by harvesting of low-energy photons. Nature, 388(6641), 454–456. https://doi.org/10.1038/41290
Kelley, J. D. (1970). Intra‐ and Intermolecular Vibrational De‐excitation in Impulsive Atom–Diatomic Molecule Collisions. The Journal of Chemical Physics, 53(10), 3864–3868. https://doi.org/10.1063/1.1673853
Klajnert, B., & Bryszewska, M. (2001). Dendrimers: Properties and applications. Acta Biochimica Polonica, 48(1), 199–208. https://doi.org/10.18388/abp.2001_5127
Kukowska-Latallo, J. F., Chen, C., Raczka, E., Qunintana, A., Rymaszewski, M., & Baker, J. R. (2000). Intravascular and Endobronchial DNA Delivery to Murine Lung Tissue Using a Novel, Nonviral Vector. Human Gene Therapy, 11(10), 1385–1395. https://doi.org/10.1089/10430340050057468
Kumar, G. S., & Neckers, D. C. (1989). Photochemistry of Azobenzene-Containing Polymers. Chemical Reviews, 89(8), 1915–1925. https://doi.org/10.1021/cr00098a012
Liu, B., He, X., Gu, M., Huang, S., Liu, X., Ouyang, X., … Zhang, G. (2008). Luminescence spectra of stilbene-3 doped lead-tin-fluorophosphate glass excited by VUV-UV synchrotron radiation. Journal of Non-Crystalline Solids, 354(29), 3462–3467. https://doi.org/10.1016/j.jnoncrysol.2008.02.020
Nakazato, S., Takizawa, T., & Arai, T. (2012). Photoisomerization and energy transfer in naphthalene-terminated stilbene dendrimers. Photochemical and Photobiological Sciences, 11(6), 885–888. https://doi.org/10.1039/c2pp05328d
Nanjwade, B. K., Bechra, H. M., Derkar, G. K., Manvi, F. V., & Nanjwade, V. K. (2009, October 8). Dendrimers: Emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences. Elsevier. https://doi.org/10.1016/j.ejps.2009.07.008
Nantalaksakul, A., Reddy, D. R., Bardeen, C. J., & Thayumanavan, S. (2006). Light harvesting dendrimers. Photosynthesis Research, 87(1), 133–150. https://doi.org/10.1007/s11120-005-8387-3
Otomo, A., Otomo, S., Yokoyama, S., & Mashiko, S. (2001). Stimulated emission in dendrimer-doped polymer waveguides. In Thin Solid Films (Vol. 393, pp. 278–283). Elsevier. https://doi.org/10.1016/S0040-6090(01)01087-2
Oyebola, O. O., & Sieradzan, A. (2013). Characterization of Dendrimers for Photonic Applications. Journal of Sci. Res. Dev (Vol. 14). Retrieved from https://ir.unilag.edu.ng/handle/123456789/200
Scholes, G. D. (2017). Introduction: Light harvesting. Chemical Reviews, 117(2), 247–248. https://doi.org/10.1021/acs.chemrev.6b00826
Wakabayashi, Y., Tokeshi, M., Hibara, A., Jiang, D.-L., Aida, T., & Kitamori, T. (2000). Infrared Absorption Characteristics of Large-Sized Spherical Aryl-Ether Dendrimers. Analytical Sciences, 16(12), 1323–1326. https://doi.org/10.2116/analsci.16.1323.