Energy Spectra of Shifted Screened Kratzer Potential (SSKP) for some Diatomic Molecules in the Presence of Magnetic and Aharonov-Bohm Flux Fields using Extended Nikiforov-Uvarov Method
Main Article Content
Abstract
It is well-established in the literature that some magnetic field-related phenomena, such as Zeeman effect, have recently become particular significant in changing the behavior of some quantum system. Notably, degeneracy is eleiminated by the magnetic field. It has also recently been found that the Aharonov-Bohm (AB)-flux field serves this purpose when it is introduced to a quantum system. Therefore, in this research work, the effect of shifting parameters on the energy spectra of Hydrogen (H2), Lithium Hydride (LiH), Hydrogen Chloride (HCl), and Carbon (II) oxide (CO) diatomic molecules with shifted screened Kratzer potential model in the presence of magnetic and Aharonov-Bohm (AB)-flux fields are investigated using Extended Nikiforov-Uvarov (ENU) method. We obtained the energy equation in a closed form and its corresponding wave function in terms of hypergeometric polynomials respectively. The obtained energy equation are used to study the selected diatomic molecules. It is observed that the effect of shifting parameters influences the energy eigenvalues of diatomic molecules to becomes strongly negative or bound. From our finding, it could be concluded that to regulate the energy spectra of these diatomic molecules, the shifting parameters will do so greatly. This is because it has been established that, potential energy functions with more parameters are better than those with fewer parameters as they tend to fit experimental data. It is also seen that the presence of magnetic and Aharonov-Bohm (AB)-flux fields breaks degeneracy in the energy levels of diatomic molecules. As a special case, when the shifting parameters in the shifted screened Kratzer potential is set to zero, then the well-known Kratzer potential and screened Kratzer potential are recovered. Numerical results for the energy eigenvalues are also obtained for different quantum states. Our results are seen to agree with the results in literature.
Downloads
Article Details
References
Abramowitz, M., & Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York.
Aygun, M., Bayrak, O., Boztosun, I., & Sahin, Y. (2012). The Energy Eigenvalues of the Kratzer Potential in the presence of a magnetic field. The European Physical Journal D, 66: 35, 1-5. https://doi.org/10.1140/epjd/e2011-20319-5
Bayrak, O., & Boztosun, I., & Ciftci, H. (2006). Exact Analytical Solutions to the Kratzer Potential by the Asymptotic Iteration Method. International Journal of Quantum Chemistry, 107(3), 540-544. https://doi.org/10.1002/qua.21141
Bayrak, O., Kocak, G., & Boztosun, I. (2006). Any l-state Solutions of the Hulthen Potential by the Asymptotic Iteration Method. Journal of Physics A: Mathematical and General, 39(37), 11521.
Cetin, A. (2008). A Quantum Pseudodot system with a two-dimensional Pseudoharmonic Potential, Physics Letters A, 372(21), 3852-3856.
Edet, C. O., Khordad, R., Ettah, E. B., Aljunid, S. A., Endut, R., Ali, N., Asjad, M., Ushie, P. O., & Ikot, A. N. (2022). Magneto-transport and Thermal Properties of TiH Diatomic Molecule under the Influence of Magnetic and Aharonov-Bohm (AB) Fields. Scientific Reports, 12: 15430, 1-15. https://doi.org/10.1038/s41598-022-19396-x
Eshghi, M., & Mehraban, H. (2017). Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential. The European Physical Journal Plus, 132(3), 121. https://doi.org/10.1140/epjp/i2017-11379-x
Falaye, B. J., Ikhdair, S. M., & Hamzavi, M. (2015). Formula method for bound state problems. Few-Body Systems, 56(1), 63-78.
Ferkous, N., & Bounames, A. (2013). On the spin-1/2 Aharonov-Bohm problem for modified Poschl-Teller potential, physical regularization and self-adjoint extensions, The European Journal Plus, 59(6), 679-683. https://ctp.itp.ac.cn/EN/Y2013/V59/106/679
Ferkous, N., Boultif, A., & Sifour, M. (2019). 2D Pauli Equation with Hulthen Potential in the Presence of Aharonov-Bohm Effect. Communication Theoretical Physics, 134(258), 679-683. https://doi.org/10.1140/epjp/i2019-12608-0
Gradshteyn, I. S., & Ryzhik, I. M. (2012). Table of Integrals, Series, and Products, 7th edition, USA.
Greene, R. L. & Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. Physical. Review. A, 14, 2363–2366. https://doi.org/10.1103/PhysRevA.14.2363
Hassanabadi, H., Lu, L. L., Zarrinkamar, S., Liu, G. H., & Rahimov, H. (2012). Approximate Solutions of Schrodinger Equation under Manning-Rosen Potential in Arbitrary Dimension via SUSYQM. ACTA PHYSICA POLONICA, 122(4), 650-654.
Horchani, R., Al-Aamri, H., Al-Kindi, N., Ikot, A. N., Okorie, U. S., Rampho, G. J., & Jelassi, H. (2021). Energy Spectra and Magnetic Properties of Diatomic Molecules in the Presence of Magnetic and AB Fields with the Inversely Quadratic Yukawa Potential. European Physical Journal D, 75:36, 1-13. https://doi.org/10.1140/epjd/s10053-021-00038-2
Ibrahim, N., Okorie, U. S., Sulaiman, N., Rampho, G. J., & Ramantswana, M. (2022). Solutions of the Schrodinger Equation of the Shifted Screened Kratzer Potential and its Thermodynamic Functions using the Extended Nikiforov-Uvarov Method. Frontiers in Physics. 10:9882279. https://doi.org/10.3389/fphy.2022.988279
Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2021). The Nikiforov-Uvarov-Functional Analysis Method: A New Approach for Solving Exponential-Type Potential. Few Body System, 62:9, 1-16. https://doi.org/10.1007/s00601-021-01593-5
Ikot, A. N., Edet, C. O., Okorie, U. S., Abdel-Aty, A., H., Ramantswana, M., Rampho, G. J., Alsheri, N. A., Elagan, S. K., & Kaya, S. (2021). Solutions of the 2D Schrodinger Equation and its Thermal Properties for Improved Ultra-Generalized Exponential Hyperbolic Potential. European Physical Journal Plus, 136:434, 1-18. https://doi.org/10.1140/epjp/s13360-021-01408-w
Ikot, A. N., Okorie, U. S., Osobonye, G., Amadi, P. O., Edet, C. O., Sithole, M. J., Rampho, G. J., & Sever, R. (2020). Superstatistics of Schrodinger Equation with Pseudo-Harmonic Potential in External Magnetic and Aharonov-Bohm Fields. Journal of Heliyon, 6, e03738, 1-7.
https://doi.org/10.1016/j.heliyon.2020.e03738
Ikot, A. N., Edet, C. O., Amadi, P. O., Okorie, U. S., Rampho, G. J., & Abdullah, H. Y. (2020). Thermodynamic Properties of Aharonov-Bohm and Magnetic Fields with Screened Kratzer Potential. European Physical Journal D, 74:159, 1-13. https://doi.org/10.1140/epjd/e2020-10084-9
Ikhdair, S. M., & Sever, R. (2009). Exact Quantization Rule to the Kratzer-type Potentials: An Application to the Diatomic Molecules. Journal of Mathematical Chemistry, 45, 1137-1152. https://doi.org/10.1007/s10910-008-9438-8
Ikhadiar, S. M. (2012). Approximate l-states of the Manning-Rosen Potential by using Nikiforov-Uvarov Method. International Scholarly Research Network, 2012, 1-20. https://doi.org/10.5402/2012/201525
Ikhdair, S. M., Hamzavi, M., & Sever, R. (2012). Spectra of Cylindrical Quantum Dots: The Effect of Electrical and Magnetic Fields together with AB Flux field. Physica B: Condensed Matter, 407(23), 4523-4529.
Karayer, H., Demirha, D., & Buyukkilic, F. (2015). Extension of Nikiforov-Uvarov Method for the Solution of Heun Equation. Journal of Mathematical Physics, 56, 063504, 1-14. https://dx.doi.org/10.1063/1.4922601
Khordad, R. (2010a). Effects of Magnetic Field and Geometrical size on the Interband light Absorption in Quantum Pseudodot System. Solid State Sciences, 12(7): 1253-1256. https://doi.org/10.1016/i.solidstatesciences.2010.03.001
Khordad, R. (2010b). Simultaneous Effects of Temperature and Pressure on the Donor Binding Energy in a V-groove Quantum wire. Superlattices and Microstructures, 47(3), 422-431.
Nasser, I., Abdelmonem, M. S., Bahlouli, H., & Alhaidar, A. (2007). The Rotating Morse Potential Model for Diatomic Molecules in the Tridiagonal J-Matrix Representation: I. Bound States. Journal Physics B: Molecular Optical Physics, 40:4245-57. https://doi.org/10.1088/0953-4075/40/21/011
Nikiforov, A. F., & Uvarov, V. B. (1988). Special functions of mathematical physics. Basel: Birkhäuser.
Onyenegecha, C. P., Njoku, I. J., Omame, A., Okereke, C. J., & Onyeocha, E. (2021). Dirac Equation and Thermodynamic Properties with Modified Kratzer Potential. Heliyon, 7, e08023, 1-8. https://doi.org/10.1016/j.heliyon.2021.e08023
Purohit, K. R., Parmar, R. H., & Rai, A. K. (2020). Bound State Solution and Thermodynamical Properties of the Screened Cosine Kratzer Potential under Influence of the Magnetic Field and Aharonov-Bohm Flux Field. Journal Annals of Physics. https://doi.org/10.1016/j.aop.2020.168335
Rampho, G. J., Ikot, A. N., Edet, C. O., & Okorie, U. S. (2020). Energy Spectra and Thermal Properties of Diatomic Molecules in the Presence of Magnetic and AB Fields with Improved Kratzer Potential. Molecular Physics, e1821922. https://doi.org/10.1080/00268976.2020.1821922
Serrano, F. A., Gu, X. Y., & Dong, S. H. (2010). Qiang–Dong proper quantization rule and its applications to exactly solvable quantum systems. Journal of mathematical physics, 51(8), 082103.
Tezcan, C., & Sever, R. (2009). A general approach for the exact solution of the Schrödinger Equation. International Journal of Theoretical Physics, 48(2), 337-350.