Fractional Derivative Models for Energy Levels and Molar Entropy of Diatomic Molecules

Main Article Content

Abubakar Ahmed
E. S. Eyube
B. D. Mohammed
J. B. Ayuba
B. Sabo

Abstract

This study develops new analytical equations for the energy levels and molar entropy of substances by solving the Schrödinger equation with the Pöschl-Teller potential. While thermodynamics is crucial in fields like agriculture, drug design, and medical research, existing models often use spectroscopic constants but overlook fractional parameters, which limits their accuracy for gaseous diatomic molecules. By integrating fractional parameters alongside spectroscopic constants, this study addresses this limitation and improves precision. The new equations are applied to analyze pure substances, including Br2 (X 1g+), Cl2 (X 1g+), CO (X 1+), and Na2 (X 1g+). The mean percentage absolute deviation (MPAD) of the energy levels obtained is 1.4797%, 0.9043%, 0.0898%, and 1.1352%, respectively, compared to Rydberg-Klein-Rees data. For molar entropy, the MPAD values are 0.1381%, 0.1360%, 0.1322%, and 0.6437% relative to data from the National Institute of Standards and Technology (NIST) database. These results indicate a significant improvement in accuracy over existing models and are consistent with the literature on gaseous molecules.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ahmed, A., Eyube, E. S., Mohammed, B. D., Ayuba, J. B., & Sabo, B. (2024). Fractional Derivative Models for Energy Levels and Molar Entropy of Diatomic Molecules. Nigerian Journal of Physics, 33(S), 164–174. https://doi.org/10.62292/njp.v33(s).2024.258
Section
Articles

References

Abu-Shady, M., and Khokha, E.M. (2023). A Precise Estimation for Vibrational Energies of Diatomic Molecules Using the Improved Rosen-Morse Potential. Sci. Rep. 13, 11578. https://doi.org/10.1038/s41598-023-37888-2

Abu-Shady, M., and Fath-Allah, H.M. (2023). The Parametric Generalized Fractional Nikiforov-Uvarov Method and Its Applications. East Eur. J. Phys. 3, 248. https://doi.org/10.26565/2312-4334-2023-3-22

Abu-Shady, M., Khokha, E.M., and Abdel-Karim, T.A. (2022) The Generalized Fractional NU Method For the diatomic molecules in the Deng-Fan model. Eur. Phys. J. D. 76, 159. https://doi.org/10.1140/epjd/s10053-022-00480-w

Abu-Shady, M., and Khokha, E.M. (2022). On the Prediction of Fractional Vibrational Energies for Diatomic Molecules with the Improved Tietz Potential. Mol. Phys. 120, e2140720. https://doi.org/10.1080/00268976.2022.2140720

Ahmed, A.D., Eyube, E.S., Omugbe, E., Onate, C.A., and Timtere, P. (2023). Bound-State Energy Spectrum and Thermochemical Functions of The Deformed Schiöberg Oscillator. Sci. Rep. 13, 20386. https://doi.org/10.1038/s41598-023-47235-0

Coxon, J. A. (1980). Revised Molecular Constants, RKR Potential, and Long-Range Analysis for the B3Π(0u+) State of Cl2, and Rotationally Dependent Franck-Condon Factors for Cl2 (BX1Σg+). J. Mol. Spectrosc. 82, 264. https://doi.org/10.1016/0022-2852(80)90116-2

Eyube, E.S., Notani, P.P., Nyam, G.G., Jabil, Y.Y., and Izam, M.M. (2023). Pure Vibrational State Energies and Statistical-Mechanical Models for the Reparameterized Scarf Potential. Front. Phys. 11, 978347. https://doi.org/10.3389/fphy.2023.978347

Eyube, E.S., Notani, P.P., and Dikko, A.B. (2022). Modeling of Diatomic Molecules with Modified Hyperbolical-Type Potential. Eur. Phys. J. Plus, 137, 329. https://doi.org/10.1140/epjp/s13360-022-02526-9

Eyube, E.S., Notani, P.P., and Izam, M.M. (2022). Potential Parameters and Eigenspectral of Improved Scarf II Potential Energy Function for Diatomic Molecules. Mol. Phys. 120, e1979265. https://doi.org/10.1080/00268976.2021.1979265

Eyube, E.S., Bitrus, B.M., Samaila, H., and Notani, P.P. (2022). Model Entropy Equation for Gaseous Substances. Int. J. Thermophys. 43, 55. https://doi.org/10.1007/s10765-022-02980-8

Eyube, E.S., Notani, P.P., Samaila, H. (2022). Analytical Prediction of Enthalpy and Gibbs Free Energy of Gaseous Molecules. Chem. Thermodyn. Thermal Anal. 6, 100060. https://doi.org/10.1016/j.ctta.2022.100060

Eyube, E.S., Onate, C.A., Omugbe, E., and Nwabueze, C.M. (2022). Theoretical Prediction of Gibbs Free Energy and Specific Heat Capacity of Gaseous Molecules. Chem. Phys. 560, 111572. https://doi.org/10.1016/j.chemphys.2022.111572

Eyube, E.S., Nyam, G.G., and Notani, P.P. (2021). Improved q-deformed Scarf II Potential. Phys. Scr. 96, 125017 https://doi.org/10.1088/1402-4896/ac2eff

Focsa, C., Li, H., and Bernath, P. F. (2000). Characterization of the Ground State of Br2 by Laser-Induced Fluorescence Fourier Transform Spectroscopy of the B3Π0+u-X1Σg+ System. J. Mol. Spectrosc. 200, 104. https://doi.org/10.1006/jmsp.1999.8039

Garbett, N. C., and Chaires, J. B. (2012). Thermodynamic studies for drug design and screening. Expert Opin. Drug Discov. 7, 299. https://doi.org/10.1517/17460441.2012.666235

Hajigeorgiou, P. G. (2010). An Extended Lennard-Jones Potential Energy Function for Diatomic Molecules: Application to Ground Electronic States. J. Mol. Spectrosc. 263, 101. https://doi.org/10.1016/j.jms.2010.07.003

Jia, C. S., Zhang, L. H., Peng, X. L., Luo, J. X., Zhao, Y. L., Liu, J. Y., Guoa, J.J., Dong, L., and Tang, L.D. (2019). Prediction of Entropy and Gibbs Free Energy for Nitrogen. Chem. Eng. Sci. 202, 70. https://doi.org/10.1016/j.ces.2019.03.033

Jia, C. S., Wang, C. W., Zhang, L. H., Peng, X. L., Tang, H. M., Liu, J. Y., Xiong, Y., and Zeng, R. (2018). Predictions of Entropy for Diatomic Molecules and Gaseous Substances. Chem. Phys. Lett. 692, 57. https://doi.org/10.1016/j.cplett.2017.12.013

Kirschner, S. M., and Watson, J. K. G. (1974). Second-Order Semiclassical Calculations for Diatomic Molecules. J. Mol. Spectrosc. 51, 321. https://doi.org/10.1016/0022-2852(74)90060-5

Kusch, P., and Hessel, M. M. (1978). An Analysis of the B 1Πu–X 1∑g+ Band System of Na2. J. Chem. Phys. 68 (1978) 2591. http://dx.doi.org/10.1063/1.436117

National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2017). https://doi.org/10.18434/T42S31

Onate, C.A., Okon, I.B., Omugbe, E., Eyube, E.S., Al-Asbahi, B.A., Kumar, Y.A., Emeje, K.O., Aghemenloh, E., Obasuyi, A.R., Obaje, V.O., and Etchie, T.O. (2924). Chem. Phys. 582, 112294. https://doi.org/10.1016/j.chemphys.2024.112294

Popovic, M., and Minceva, M. (2021). Standard Thermodynamic Properties, Biosynthesis Rates, and the Driving Force of Growth of Five Agricultural Plants. Front. Plant Sci. 12, 671868. https://doi.org/10.3389/fpls.2021.671868

Shamsabadipour, A., Pourmadadi, M., Davodabadi, F., Rahdar, A., and Ferreira, L.F.R. (2023). Applying Thermodynamics as An Applicable Approach to Cancer Diagnosis, Evaluation, and Therapy: A Review. J. Drug Deliv. Technol. 85, 104681. https://doi.org/10.1016/j.jddst.2023.104681

Strekalov M.L. (2024). The Heat Capacity of Triatomic Gases: An Analytical Approach. Int. J. Thermophys. 45, 25. https://doi.org/10.1007/s10765-023-03315-x

Williams, I., Turci, F., Hallett, J. E., Crowther, P., Cammarota, C., Biroli, G., and Royall, C. P. (2018). Experimental Determination of Configurational Entropy in A Two-Dimensional Liquid Under Random Pinning. J. Phys. Condens. Matter 30, 094003. https://doi.org/10.1088/1361-648X/aaa869

Yanar, H., Taş, A., Salti, M., and Aydogdu, O. (2020). Ro-Vibrational Energies of CO Molecule via Improved Generalized Pöschl–Teller Potential and Pekeris-Type Approximation. Eur. Phys. J. Plus 135, 292. https://doi.org/10.1140/epjp/s13360-020-00297-9

Most read articles by the same author(s)