Combination-combination synchronization of chaotic fractional order systems
Main Article Content
Abstract
The quest for simple and practically implementable synchronization control functions is the fundamental motive for this research work because most of the control functions for synchronization are bulky thereby leading to complexity in implementation and high cost. This research paper examines the combination-combination synchronization of chaotic fractional order systems of identical order evolving from different initial conditions via the backstepping nonlinear control technique with the aim of reducing the control function’s complexity and cost. So, based on the stability theory of fractional order systems, stable synchronization are designed via a backstepping technique using chaotic fractional order Duffing and Aneodo as the paradigm. Numerical simulations are presented to confirm the feasibility of the analytical technique. The number of control functions has been sufficiently reduced compared to previous work hence reduction in control functions complexity and reduced cost of implementation. The outcome of this work may be useful to give a better understanding of the underlying dynamical behaviour among several interacting particles particularly in particle physics.
Downloads
Article Details
References
Alghamdi, A.A.S. (2021); Design and Implementation of a Voice Encryption System Using Fractional-order Chaotic Maps. Int. Res. J. Modern. Eng. Technol. Sci. 3 (6).
Ali, A., Althobaiti, S., Althobaiti, A., Khan, K., Jan, R., (2023); Chaotic Dynamics in a Non-linear Tumor-immune Model with Caputo-Fabrizio Fractional Operator. Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjs/s11734-023-00929-y
Bickel D. R., West B. J., (1998); Multiplicative and Fractal Process in DNA Evolution. In: Fractals-complex Geometry Patterns & Scaling in Nature & Society, 6(3), 211–217.
Boulaaras, S., Ramalingam, R., Gnanaprakasam, A. J., (2023); SEIR Model for COVID-19: Stability of the Standard Coronavirus Factor and Control Mechanism. Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjs/s11734-023-00915-4.
Chang, C.M., Chen, H.K., (2010); Chaos and Hybrid Projective Synchronization of Commensurate and Incommensurate Fractional-order Chen–Lee Systems. Nonlinear Dyn. 62, 851–858.10.1007/s11071-010-9767-6.
Fadila, S., Abdelmalek, B., Renat, T., (2023); Fractional Model of Multiple Trapping with Charge Leakage: Transient Photoconductivity and Transit–Time Dispersion, Fractal Fract. 7(3), 243. https://doi.org/10.3390/fractalfract7030243.
Harris, P.A., Garra, R., (2017); Nonlinear Heat Conduction Equations With Memory: Physical Meaning and Analytical Results. J. Math. Phys. 58(6), 063501.
He, J., Chen, F., (2018); Dynamical Analysis of a New Fractional-order Rabinovich System and its Fractional Matrix Projective Synchronization. Chin. J. Phys. 56(5), 2627–2637.
Hegazi, A.S., Ahmed, E., Matouk, A.E., (2013); On Chaos Control and Synchronization of the Commensurate Fractional Order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1193–1202.
Jan, R., Boulaaras, S., (2022); Analysis of Fractional-order Dynamics of Dengue Infection with Non-linear Incidence Functions. Trans. Inst. Meas. Control. 44(13), 2630–2641.
Janarthanan, R., Aghababaei, S., Parastesh, F., Karthikeyan, R., Jafari, S., and Hussain, I., (2021); Chimera State in the Network of Fractional-Order FitzHugh–Nagumo Neurons. Article ID 2437737.
Khan, A., Nigar, U., (2020);Combination Projective Synchronization in Fractional-Order Chaotic System with Disturbance and Uncertainty. Int J. Appl. Comput. Math 6, (97). https://doi.org/10.1007/s40819-020-00852-z.
Kilbas, A. A. A., Srivastava, H., Trujillo, J., (2006); Theory and Applications of Fractional Differential Equations. Elsevier Science Inc., New York, United States
Lazarevi, M. P., Rapai, M. R., Ekara, T. B., (2014); Introduction to Fractional Calculus With Brief Historical Background. In: Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability, and Modeling. WSEAS Press.
Li, C., Chen, Y., Kurths, J., (2013); Fractional Calculus and its Applications. Philos Trans Ser A Math Phys Eng Sci 371:1–3.
Liu, X., Hong, L., Tang, D., (2021); Crises in a Fractional-order Piecewise System. Nonlinear Dyn 103, 2855–2866.
Liu, X., Hong, L., Yang, L., (2014); Fractional-order Complex T System: Bifurcations, Chaos Control, and Synchronization. Nonlinear Dyn. 75(3), 589–602.
Liu, X.J., Hong, L., Jiang, J., (2016); Global Bifurcations in Fractional-order Chaotic Systems With an Extended Generalized Cell Mapping Method. Chaos 26(8), 084304.
Machado, J. A. T., Galhano, A. M. S. F., (2012); Fractional Order Inductive Phenomena Based on the Skin Effect. Nonlinear Dyn. 68(1), 107–115.
Matignon, D., (1996); Stability Results for Fractional Differential Equations With Applications to Control Processing. Computational Engineering in Systems Applications. 2, 963–968. WSEAS Press.
Mitkowski, W., Długosz, M., Skruch, P. (2022). Selected Engineering Applications of Fractional-Order Calculus. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Fractional Dynamical Systems: Methods, Algorithms and Applications. Studies in Systems, Decision and Control. 402, Springer, Cham.
Ogunjo, S. T., Ojo, K. S., Fuwape, I. A., (2018); Multiswitching Synchronization Between Chaotic Fractional Order Systems of Different Dimensions. Mathematical Techniques of Fractional Order Systems Advances in Nonlinear Dynamics and Chaos (ANDC), chapter 15, 451-473, Elsevier.
Ogunjo, S. T., Ojo, K. S. Fuwape, I. A., (2017); Comparison of Three Different Synchronization Schemes for Fractional Chaotic Systems. In: Azar A., Vaidyanathan S., Ouannas A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, 688, 471-495. Springer, Cham.
Ojo, K. S., Ogunjo, S. T., Fuwape, I. A., (2022); Modified Hybrid Combination Synchronization of Chaotic Fractional Order Systems. Soft Comput. 26, 11865–11872. https://doi.org/10.1007/s00500-022-06987-z.
Platas-Garza, M. A., Zambrano-Serrano, E., Rodríguez-Cruz, J. R., and Posadas-Castillo, C., (2021); Implementation of an Encrypted-Compressed Image Wireless Transmission Scheme Based on Chaotic Fractional-order Systems. Chinese Journal of Physics. 71, 22–37.
Razminia, A., Baleanu, D., (2013); Complete Synchronization of Commensurate Fractional-order Chaotic Systems Using Sliding Mode Control. Mechatronics. 23, 873-879.
Singh, A.K., Yadav, V.K., Das, S., (2017); Dual Combination Synchronization of the Fractional Order Complex Chaotic Systems. J. Comput. Nonlinear Dyn. 12(1), 011017.
Srivastava, M., Ansari, S.P., Agrawal, S.K., Das, S., Leung, A.Y.T., (2014); Anti-synchronization Between Identical and Non-identical Fractional-order Chaotic Systems Using Active Control Method. Nonlinear Dyn. 76, 905-914.10.1007/s11071-013-1177-0.
Tang, T. Q., Shah, Z., Bonyah, E., Jan, R., Shutaywi, M., N. Alreshidi, N., (2022); Modeling and Analysis of Breast Cancer With Adverse Reactions of Chemotherapy Treatment Through Fractional Derivative. Comput. Math. Methods Med. 1–9.
Tang, T. Q., Shah, Z., Jan, R., Alzahrani, E., (2022); Modeling the Dynamics of Tumor–Immune Cells Interactions via Fractional Calculus. Eur. Phys. J. Plus.137(3), 367.
Valentim, A., Rabi, J. A., David, S. A., Machado, J. A. T., (2021); On Multistep Tumor Growth Models of Fractional Variable-order. Biosystems. 199, 104294.
Velamore, A.A., Hegde, A., Khan, A.A., Deb, S., (2021); Dual Cascaded Fractional Order Chaotic Synchronization for Secure Communication with Analog Circuit Realisation. In: Proceedings of the 2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 8–10 January.
Wang, X.Y., Zhang, X., Ma, C., (2012); Modified Projective Synchronization of Fractional-order Chaotic Systems via Active Sliding Mode Control. Nonlinear Dyn. 69, 511–517.10.1007/s11071-011-0282-1.
Yadav, V.K., Srivastava, M., Das, S., (2018); Dual Combination Synchronization Scheme for Non-identical Different Dimensional Fractional Order Systems Using Scaling Matrices. Mathematical Techniques of Fractional Order Systems. 347–374, Elsevier. Amsterdam.
Yadav, V. K., Das, S., (2019); Combination Synchronization of Fractional-order n-Chaotic Systems Using Active Backstepping Design. Nonlinear Engineering, 8, (1), 597-608. https://doi.org/10.1515/nleng-2017-0073.
Zhang, B., Shu, X., (2022); Introduction to Fractional Calculus. In: Fractional-Order Electrical Circuit Theory. CPSS Power Electronics Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-2822-1_1