Computational Study of Structural Transformation in Densified Silica glass

Main Article Content

Isaiah E. Igwe
Zakariyya Bashir Sule

Abstract

Pressure-induced change in structure and properties of noncrystalline materials, such as liquids and glasses, is an important and challenging issue in condensed-matter physics. In this study, molecular dynamics (MD) was used to provide insight into the microscopic picture of changes in the structural correlation of densified SiO2 glass. The simulations are based on the effective interatomic potential. Changes in the position and height of the first sharp peak in the pair distribution function and bond-angle distributions were investigated as a function of density. The pair-distribution function show that the average Si-O bond length at normal density is 1.62 Å, then linearly increases to 1.67 Å at high density. At high density where the glass reaches the stishovite density the Si-O coordination changes from 4 to 5.8 and the O-Si-O angle distribution is peaked at 90o with a full width at half maximum (FWHM) of 21o and the Si-O-Si angle distribution is peaked at 95o and 128o. The Si-O bond angle distribution becomes covalent-like and the O-Si-O bond angle distribution becomes broader upon densification. These results provide firm evidence that the system has transformed from a corner-sharing tetrahedral network to one in which there are corner-sharing and edge-sharing octahedral.

Downloads

Download data is not yet available.

Article Details

How to Cite
Igwe, I. E., & Sule, Z. B. (2023). Computational Study of Structural Transformation in Densified Silica glass. Nigerian Journal of Physics, 32(1), 23–27. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/15
Section
Articles

References

Allen, M. P., & Tildesley, D. J. (2017). Computer Simulation of Liquids: Oxford University Press.

Brazhkin, V. V., Lyapin, A. G., & Trachenko, K. (2011). Atomistic modeling of multiple amorphous-amorphous transitions in SiO2 and GeO2 glasses at megabar pressures. Physical Review B, 83(13), 132103. doi:10.1103/PhysRevB.83.132103

Du, T., Sørensen, S. S., To, T., & Smedskjaer, M. M. (2022). Oxide glasses under pressure: Recent insights from experiments and simulations. Journal of Applied Physics, 131(17). doi:10.1063/5.0088606

Grimsditch, M. (1986). Annealing and relaxation in the high-pressure phase of amorphous SiO2. Physical Review B, 34(6), 4372-4373. doi:10.1103/PhysRevB.34.4372

Hemley, R. J., Mao, H. K., Bell, P. M., & Mysen, B. O. (1986). Raman Spectroscopy of SiO2 Glass at High Pressure. Phys Rev Lett, 57(6), 747-750. doi:10.1103/PhysRevLett.57.747

Hong, X., & Newville, M. J. p. s. s. (2020). Polyamorphism of GeO2 glass at high pressure. 257(11), 2000052.

Igwe, I. E., & Batsari, Y. T. (2022). Atomistic Simulation of the Effect of Temperature on Mechanical Properties of some Nano-Crystalline Metals. African Scientific Reports, 1(2), 95–102. doi:10.46481/asr.2022.1.2.33

Jin, W. (1995). Molecular-Dynamics Simulations of Structural Transformation and Dynamical Correlations in Silica Glass at High Pressures. In Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—B: Ceramic Engineering and Science Proceedings (pp. 1077-1087).

Jin, W., Kalia, R. K., & Vashishta, P. (1992). Structural and Dynamical Correlations in Stishovite and High Density Silica Glass. MRS Online Proceedings Library (OPL), 293, 247. doi:10.1557/PROC-293-247

Kapoor, S., Wondraczek, L., & Smedskjaer, M. M. (2017). Pressure-Induced Densification of Oxide Glasses at the Glass Transition. 4. doi:10.3389/fmats.2017.00001

Kien, P. H., Trang, G. T. T., & Hung, P. K. (2020). Topological analysis on structural transition under compression and structural heterogeneity in silica glass: a molecular dynamics simulation. Phase Transitions, 93(7), 639-653. doi:10.1080/01411594.2020.1768257

Klinger, M. I. (2013). Glassy disordered systems: Glass formation and universal anomalous low-energy properties: World Scientific.

Machon, D., Meersman, F., Wilding, M. C., Wilson, M., & McMillan, P. F. (2014). Pressure-induced amorphization and polyamorphism: Inorganic and biochemical systems. Progress in Materials Science, 61, 216-282. doi:https://doi.org/10.1016/j.pmatsci.2013.12.002

Meade, C., Hemley, R. J., & Mao, H. K. (1992). High-pressure x-ray diffraction of SiO2 glass. Phys Rev Lett, 69(9), 1387-1390. doi:10.1103/PhysRevLett.69.1387

Murakami, M., Kohara, S., Kitamura, N., Akola, J., Inoue, H., Hirata, A., . . . Ohishi, Y. (2019). Ultrahigh-pressure form of SiO2 glass with dense pyrite-type crystalline homology. Physical Review B, 99(4), 045153. doi:10.1103/PhysRevB.99.045153

Polian, A., & Grimsditch, M. (1990). Room-temperature densification of a- SiO2 versus pressure. Physical Review B, 41(9), 6086-6087. doi:10.1103/PhysRevB.41.6086

Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation (2 ed.). Cambridge: Cambridge University Press.

Susman, S., Volin, K. J., Price, D. L., Grimsditch, M., Rino, J. P., Kalia, R. K., . . . Liebermann, R. C. (1991). Intermediate-range order in permanently densified vitreous SiO2: A neutron-diffraction and molecular-dynamics study. Phys Rev B Condens Matter, 43(1), 1194-1197. doi:10.1103/physrevb.43.1194

van Beest, B. W. H., Kramer, G. J., & van Santen, R. A. (1990). Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett, 64(16), 1955-1958. doi:10.1103/PhysRevLett.64.1955

Vollmayr, K., Kob, W., & Binder, K. (1996). Cooling-rate effects in amorphous silica: A computer-simulation study. Physical Review B, 54(22), 15808-15827. doi:10.1103/PhysRevB.54.15808

Williams, Q., & Jeanloz, R. (1988). Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science, 239(4842), 902-905. doi:10.1126/science.239.4842.902

Wolf, D., Keblinski, P., Phillpot, S. R., & Eggebrecht, J. (1999). Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation. The Journal of Chemical Physics, 110(17), 8254-8282. doi:10.1063/1.478738 %J The Journal of Chemical Physics

Wu, M., Liang, Y., Jiang, J.-Z., & Tse, J. S. (2012). Structure and Properties of Dense Silica Glass. Scientific Reports, 2(1), 398. doi:10.1038/srep00398