Effect of Al Dope with ZnO Electron Transport Layer in Perovskite Solar Cells Using SCAPs 1-D Simulation

Main Article Content

Abubakar Sadiq Yusuf
Abubakar Muhammad Ramalan
Ahmed Alhaji Abubakar
Isah Kimpa Mohammed
Sharifat Olalonpe Ibrahim
Firdausi Erena Adamu
Umaru Ahmadu
Kasim Uthman Isah

Abstract

Perovskite solar cells have shown exceptional performance and significant advancements in solar cell efficiency. For perovskite solar cells to conduct electrons and generate current, one of the key components is the substance known as the electron transport layer (ETL). Using the SCAPS 1D modelling program, ZnO: Al was used in this instance as the ETL material in a perovskite solar cell. Because of its interaction with the perovskite material, the ZnO: Al ETL demonstrated high cell efficiency. The performance of the ZnO: Al-doped-based solar cell achieved a PCE as high as 23.5%. In the meanwhile, the greatest cell performance in terms of enhancing the charge transport mechanism and raising cell efficiency was shown by perovskite solar cells doping the ETL with Al and having the right layer thickness. Thus, throughout the manufacturing process, the parameters used in this study may serve as a guide.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yusuf, A. S., Ramalan, A. M., Abubakar, A. A., Mohammed, I. K., Ibrahim, S. O., Adamu, F. E., Ahmadu, U., & Isah, K. U. (2024). Effect of Al Dope with ZnO Electron Transport Layer in Perovskite Solar Cells Using SCAPs 1-D Simulation. Nigerian Journal of Physics, 33(2), 22–29. https://doi.org/10.62292/njp.v33i2.2024.214
Section
Articles

References

Ahmed, S., Jannat, F., Khan, M. A. K., & Alim, M. A. (2021). Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik, 225, 165765.

Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S. M., Choi, M., & Park, N.-G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699.

Alias, N., Arith, F., Mustafa, A., Ismail, M., Chachuli, S., & Shah, A. (2022). Compatibility of Al-doped ZnO electron transport layer with various HTLs and absorbers in perovskite solar cells. Applied Optics, 61(15), 4535-4542.

Anwar, F., Mahbub, R., Satter, S. S., & Ullah, S. M. (2017). Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance. International Journal of Photoenergy, 2017.

Aseena, S., Abraham, N., & Babu, V. S. (2021). Optimization of layer thickness of ZnO based perovskite solar cells using SCAPS 1D. Materials Today: Proceedings, 43, 3432-3437.

Bansal, S., & Aryal, P. (2016). Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC),

Bhoomanee, C., Ruankhama, P., Choopun, S., Prathan, A., & Wongratanaphisan, D. (2019). Effect of al-doped ZnO for electron transporting layer in planar perovskite solar cells. Materials Today: Proceedings, 17, 1259-1267.

Burgelman, M., Verschraegen, J., Minnaert, B., & Marlein, J. (2007). Numerical simulation of thin film solar cells: practical exercises with SCAPS. Proceedings of NUMOS (Int. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B), Gent. 2007,

Correa-Baena, J.-P., Anaya, M., Lozano, G., Tress, W., Domanski, K., Saliba, M., Matsui, T., Jacobsson, T. J., Calvo, M. E., & Abate, A. (2016). Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv. Mater, 28(25), 5031-5037.

Du, H.-J., Wang, W.-C., & Zhu, J.-Z. (2016). Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chinese Physics B, 25(10), 108802.

Hao, L., Li, T., Ma, X., Wu, J., Qiao, L., Wu, X., Hou, G., Pei, H., Wang, X., & Zhang, X. (2021). A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Optical and Quantum Electronics, 53, 1-17.

Jeong, M., Choi, I. W., Go, E. M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H. W., & Lee, J. (2020). Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369(6511), 1615-1620.

Karthick, S., Velumani, S., & Bouclé, J. (2020). Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy, 205, 349-357.

Khattak, Y. H., Baig, F., Shuja, A., Beg, S., & Soucase, B. M. (2020). Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Solar Energy, 207, 579-591.

Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics, 8(2), 133-138.

Mahmood, A., Munir, T., Fakhar-e-Alam, M., Atif, M., Shahzad, K., Alimgeer, K., Gia, T. N., Ahmad, H., & Ahmad, S. (2022). Analyses of structural and electrical properties of aluminium doped ZnO-NPs by experimental and mathematical approaches. Journal of King Saud University-Science, 34(2), 101796.

Nizamuddin, A., Arith, F., Rong, J., Zaimi, M., Rahimi, A. S., & Saat, S. (2020). Investigation of copper (I) thiocyanate (CuSCN) as a hole transporting layer for perovskite solar cells application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78(2), 153-159.

Noorasid, N., Arith, F., Mustafa, A., Azam, M., Mahalingam, S., Chelvanathan, P., & Amin, N. (2022). Current advancement of flexible dye sensitized solar cell: A review. Optik, 254, 168089.

Noorasid, N. S., Arith, F., Firhat, A. Y., Mustafa, A. N., & Shah, A. S. M. (2022). SCAPS Numerical Analysis of Solid-State Dye-Sensitized Solar Cell Utilizing Copper (I) Iodide as Hole Transport Layer. Engineering Journal, 26(2), 1-10.

Noorasid, N. S., Arith, F., Mustafa, A. N., Azam, M. A., Suhaimy, S. H. M., & AL-ANI, O. A. (2021). Effect of Low Temperature Annealing on Anatase TiO2 Layer as Photoanode for Dye-Sensitized Solar Cell. Przeglad Elektrotechniczny, 97(10).

Rahman, M. M., Khan, M., Islam, M. R., Halim, M., Shahjahan, M., Hakim, M., Saha, D. K., & Khan, J. U. (2012). Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films. Journal of Materials Science & Technology, 28(4), 329-335.

Shen, K., Sun, H. L., Ji, G., Yang, Y., Jiang, Z., & Song, F. (2016). Fabrication and characterization of organic–inorganic hybrid perovskite devices with external doping. Nanoelectronics and Materials Development, 95.

Slami, A., Bouchaour, M., & Merad, L. (2020). Comparative study of modelling of Perovskite solar cell with different HTM layers. Int. J. Mater, 7, 2313-10555.

Stamate, M. D. (2003). On the dielectric properties of dc magnetron TiO2 thin films. Applied Surface Science, 218(1-4), 318-323.

Suhaimy, S. H. M., Ghazali, N., Arith, F., & Fauzi, B. (2020). Enhanced simazine herbicide degradation by optimized fluoride concentrations in TiO2 nanotubes growth. Optik, 212, 164651.

Tseng, Z.-L., Chiang, C.-H., Chang, S.-H., & Wu, C.-G. (2016). Surface engineering of ZnO electron transporting layer via Al doping for high efficiency planar perovskite solar cells. Nano Energy, 28, 311-318.

Vogt, M., Tobon, C. R., Alcaniz, A., Procel, P., Blom, Y., El Din, A. N., Stark, T., Wang, Z., Goma, E. G., & Etxebarria, J. (2022). Introducing a comprehensive physics-based modelling framework for tandem and other PV systems. Solar Energy Materials and Solar Cells, 247, 111944.

Most read articles by the same author(s)