Progress on Electron Transport Layers for Perovskite Solar Cells
Main Article Content
Abstract
The photovoltaic industry is very interested in designing and developing next-generation device architectures using organic-inorganic perovskite hybrid solar cell materials. In fact, perovskites represent one of the most promising materials for high efficiency, low-cost solar cells. This is most apparent in the power conversion efficiency of perovskite solar cells (PSCs) going from 3.8 to 24.2 % in recent years. One of the primary challenges of developing PSC’s however is the realization of an appropriate electron transport layer. As such, this review focuses on recent developments in the electron transport layer (ETL) of perovskite solar cells. It examines and summarises designs, electron transport layers and perovskite active layers for efficient perovskite solar cells. The performance and stability issues with organic-inorganic halide perovskite solar cells are also discussed with some recommendations for additional research on the ETL and perovskite active layer were offered.
Downloads
Article Details
References
Agha, D. N. Q., & Algwari, Q. T. (2021). The influence of the interface layer between the electron transport layer and absorber on the performance of perovskite solar cells. IOP Conference Series: Materials Science and Engineering,
Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S. M., Choi, M., & Park, N.-G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699.
Bi, D., Moon, S.-J., Häggman, L., Boschloo, G., Yang, L., Johansson, E. M., Nazeeruddin, M. K., Grätzel, M., & Hagfeldt, A. (2013a). Using a two-step deposition technique to prepare perovskite (CH 3 NH 3 PbI 3) for thin film solar cells based on ZrO 2 and TiO 2 mesostructures. RSC advances, 3(41), 18762-18766.
Bi, D., Moon, S.-J., Häggman, L., Boschloo, G., Yang, L., Johansson, E. M., Nazeeruddin, M. K., Grätzel, M., & Hagfeldt, A. (2013b). Using a two-step deposition technique to prepare perovskite (CH₃NH₃PbI₃) for thin film solar cells based on ZrO₂ and TiO₂ mesostructures.
Bryant, D., Aristidou, N., Pont, S., Sanchez-Molina, I., Chotchunangatchaval, T., Wheeler, S., Durrant, J. R., & Haque, S. A. (2016). Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science, 9(5), 1655-1660. https://doi.org/10.1039/c6ee00409a
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Gratzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319. https://doi.org/10.1038/nature12340
Chen, J., & Park, N.-G. (2020). Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Letters, 5(8), 2742-2786.
Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., & Grätzel, M. (2015). Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350(6263), 944-948.
Dong, X., Fang, X., Lv, M., Lin, B., Zhang, S., Ding, J., & Yuan, N. (2015). Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al 2 O 3 layers prepared by atomic layer deposition. Journal of Materials Chemistry A, 3(10), 5360-5367.
e Asl, S. D., Zarenezhad, H., Askari, M., Halali, M., & Sadrnezhaad, S. K. (2020). Efficient light harvesting in perovskite layer via three-dimensional TiO2 nanobranched nanorod scaffold. Nano Express, 1(3), 030017.
Fu, F., Feurer, T., Jager, T., Avancini, E., Bissig, B., Yoon, S., Buecheler, S., & Tiwari, A. N. (2015). Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat Commun, 6, 8932. https://doi.org/10.1038/ncomms9932
Giordano, F., Abate, A., Correa Baena, J. P., Saliba, M., Matsui, T., Im, S. H., Zakeeruddin, S. M., Nazeeruddin, M. K., Hagfeldt, A., & Graetzel, M. (2016). Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun, 7, 10379. https://doi.org/10.1038/ncomms10379
Guo, Q., Wu, J., Yang, Y., Liu, X., Sun, W., Wei, Y., Lan, Z., Lin, J., Huang, M., & Chen, H. (2020). Low-temperature processed rare-earth doped brookite TiO2 scaffold for UV stable, hysteresis-free and high-performance perovskite solar cells. Nano Energy, 77, 105183.
Hwang, S. H., Roh, J., Lee, J., Ryu, J., Yun, J., & Jang, J. (2014). Size-controlled SiO 2 nanoparticles as scaffold layers in thin-film perovskite solar cells. Journal of Materials Chemistry A, 2(39), 16429-16433.
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
Inami, E., Ishigaki, T., & Ogata, H. (2019). Sol-gel processed niobium oxide thin-film for a scaffold layer in perovskite solar cells. Thin Solid Films, 674, 7-11.
Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 13(9), 897-903. https://doi.org/10.1038/nmat4014
Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., & Wan, J. (2015). Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 137(21), 6730-6733.
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., & Moser, J. E. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7.
Kim, T., Lim, J., & Song, S. (2020). Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells. Energies, 13(21). https://doi.org/10.3390/en13215572
Kojima, A., Teshima, K., Miyasaka, T., & Shirai, Y. (2006). Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). ECS Meeting Abstracts,
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
Lachore, W. L., Andoshe, D. M., Mekonnen, M. A., & Hone, F. G. (2021). Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. Journal of Solid State Electrochemistry, 1-17.
Lachore, W. L., Andoshe, D. M., Mekonnen, M. A., & Hone, F. G. (2022). Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. Journal of Solid State Electrochemistry, 1-17.
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. science, 338(6107), 643-647.
Li, Y., Zhu, J., Huang, Y., Liu, F., Lv, M., Chen, S., Hu, L., Tang, J., Yao, J., & Dai, S. (2015). Mesoporous SnO2nanoparticle films as electron-transporting material in perovskite solar cells. RSC Advances, 5(36), 28424-28429. https://doi.org/10.1039/c5ra01540e
Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133-138. https://doi.org/10.1038/nphoton.2013.342
Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398.
Liu, X., Zhao, W., Cui, H., Wang, Y., Xu, T., & Huang, F. (2015). Organic–inorganic halide perovskite based solar cells–revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2(4), 315-335.
Lu, H., Ma, Y., Gu, B., Tian, W., & Li, L. (2015). Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 3(32), 16445-16452.
Mahmood, K., Khalid, A., Nawaz, F., & Mehran, M. T. (2018). Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. J Colloid Interface Sci, 532, 387-394. https://doi.org/10.1016/j.jcis.2018.08.009
Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980.
Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2013). Study on the stability of CH₃NH₃PbI₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.
Pan, H., Zhao, X., Gong, X., Li, H., Ladi, N. H., Zhang, X. L., Huang, W., Ahmad, S., Ding, L., & Shen, Y. (2020). Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 7(9), 2276-2291.
Pham, H. D., Yang, T. C. J., Jain, S. M., Wilson, G. J., & Sonar, P. (2020). Development of dopant‐free organic hole transporting materials for perovskite solar cells. Advanced Energy Materials, 10(13), 1903326.
Qiang, Y., Xie, Y., Qi, Y., Wei, P., Shi, H., Geng, C., & Liu, H. (2020). Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer. Solar Energy, 201, 523-529.
Qin, P., Paulose, M., Dar, M. I., Moehl, T., Arora, N., Gao, P., Varghese, O. K., Gratzel, M., & Nazeeruddin, M. K. (2015). Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays. Small, 11(41), 5533-5539. https://doi.org/10.1002/smll.201501460
Salado, M., Oliva-Ramirez, M., Kazim, S., González-Elipe, A. R., & Ahmad, S. (2017). 1-dimensional TiO2 nano-forests as photoanodes for efficient and stable perovskite solar cells fabrication. Nano Energy, 35, 215-222. https://doi.org/10.1016/j.nanoen.2017.03.034
Song, T.-B., Chen, Q., Zhou, H., Jiang, C., Wang, H.-H., Yang, Y., Liu, Y., You, J., & Yang, Y. (2015). Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 3(17), 9032-9050. https://doi.org/10.1039/c4ta05246c
Sun, W., Choy, K.-L., & Wang, M. (2019). The role of thickness control and interface modification in assembling efficient planar perovskite solar cells. Molecules, 24(19), 3466.
Sun, W., Choy, K. L., & Wang, M. (2019). The Role of Thickness Control and Interface Modification in Assembling Efficient Planar Perovskite Solar Cells. Molecules, 24(19). https://doi.org/10.3390/molecules24193466
Tang, G., You, P., Tai, Q., Yang, A., Cao, J., Zheng, F., Zhou, Z., Zhao, J., Chan, P. K. L., & Yan, F. (2019). Solution‐phase epitaxial growth of perovskite films on 2D material flakes for high‐performance solar cells. Advanced Materials, 31(24), 1807689.
Tomulescu, A. G., Stancu, V., Beşleagă, C., Enculescu, M., Nemneş, G. A., Florea, M., Dumitru, V., Pintilie, L., Pintilie, I., & Leonat, L. (2020). Reticulated Mesoporous TiO2 Scaffold, Fabricated by Spray Coating, for Large‐Area Perovskite Solar Cells. Energy Technology, 8(1), 1900922.
Wang, S. (2018). Function of Hole Transport Layer Components in Perovskite Solar Cells. University of California, San Diego.
Xiong, Y., Zhu, X., Mei, A., Qin, F., Liu, S., Zhang, S., Jiang, Y., Zhou, Y., & Han, H. (2018). Bifunctional Al2O3 Interlayer Leads to Enhanced Open‐Circuit Voltage for Hole‐Conductor‐Free Carbon‐Based Perovskite Solar Cells. Solar RRL, 2(5), 1800002.
Yang, G., Tao, H., Qin, P., Ke, W., & Fang, G. (2016). Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 4(11), 3970-3990. https://doi.org/10.1039/c5ta09011c
You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y. M., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., & Chen, Q. (2016). Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature nanotechnology, 11(1), 75-81.
Yu, C., Zhang, B., Chen, C., Wang, J., Zhang, J., Chen, P., Li, C., & Duan, Y. (2022). Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Research, 15(5), 4431-4438. https://doi.org/10.1007/s12274-021-4056-x
Yu, M., Guo, Y., Yuan, S., Zhao, J.-S., Qin, Y., & Ai, X.-C. (2020). The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells. RSC advances, 10(21), 12347-12353.
Zhang, B., Zhang, B., Wang, S., Yao, S., Bala, H., Sun, G., Cao, J., & Zhang, Z. (2020). Applying neoteric MgTiO3-coated TiO2 nanoparticulate films as scaffold layers in perovskite solar cells based on carbon counter electrode for retarding charge recombination. Electrochimica Acta, 338, 135884.
Zhang, D., Cui, B. B., Zhou, C., Li, L., Chen, Y., Zhou, N., Xu, Z., Li, Y., Zhou, H., & Chen, Q. (2017). Reduction of intrinsic defects in hybrid perovskite films via precursor purification. Chem Commun (Camb), 53(76), 10548-10551. https://doi.org/10.1039/c7cc05590k
Zheng, X., Hou, Y., Bao, C., Yin, J., Yuan, F., Huang, Z., Song, K., Liu, J., Troughton, J., & Gasparini, N. (2020). Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 5(2), 131-140.