EFFECT OF HYDROTHERMAL TEMPERATURE ON STRUCTURAL, MORPHOLOGICAL AND OPTICAL PROPERTIES OF FACILE HYDROTHERMALLY SYNTHESISED Cu2ZnSnS4 NANOMATERIALS

Main Article Content

Isah Mohammed Kimpa
I. K. Mohammed
S. O. Ibrahim
A. A. Abubakar
J. A. Yabagi
K. U. Isah
E. U. Uno
M. Abdullah
M. Nayan
M. A. Khairul

Abstract

Cu2ZnSnS4 (CZTS), semiconductor has proven to be a low cost promising absorber material with high optical absorption coefficient and an ideal band gap for photovoltaic applications. This work presents a facile hydrothermal synthesis of a CZTS nanocrystalline material using Polyacrylic acid (PAA) as surfactant. The effect of hydrothermal synthesis temperatures between 150 and 270oC (in steps of 40oC) on the phase, composition, microstructure and morphology were investigated. Pure kesterite CZTS were obtained, composed of spherical shaped flower-like aggregated nanoparticles, with particle sizes ranging between 10 and 19 nm. The Cu/Zn/Sn ratio were near the ideal stoichiometric ratio for samples synthesised at 150 and 170oC, while those synthesized at 230 and 270 hydrothermal temperatures show considerable deviation. The obtained bandgaps were about 1.51 eV

Downloads

Download data is not yet available.

Article Details

How to Cite
Mohammed Kimpa, I., Mohammed, I. K., Ibrahim, S. O., Abubakar, A. A., Yabagi, J. A., Isah, K. U., Uno, E. U., Abdullah, M., Nayan, M., & Khairul, M. A. (2021). EFFECT OF HYDROTHERMAL TEMPERATURE ON STRUCTURAL, MORPHOLOGICAL AND OPTICAL PROPERTIES OF FACILE HYDROTHERMALLY SYNTHESISED Cu2ZnSnS4 NANOMATERIALS. Nigerian Journal of Physics, 30(2), 86–91. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/98
Section
Articles

References

Chalapathi, U., Uthanna, S. & Raja, S. (2015). Growth of Cu2ZnSnS4 thin films by a two stage Process-Effect of incorporating of sulfur at the precursor stage. Sol. Ener. Mat. Sol. Cells, (132), 476-484.

Chan, C.P., Lam, H., & Surya, C. (2010). “Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquid. Sol Ener. Mater Sol Cells, 94(2), 207–211.

Choubrac, L., Lafond, A., Guillot-Deudon, C., & Moëlo and S. Jobic, Y. (2012). Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds” Inorg Chem, l(51), 3346-3348.

Das, S., Sa, K., Mahakul, P. C., Raiguru, J., Alam, I., Subramanyam, B. & Mahanandia, P. (2018). Synthesis of quaternary chalcogenide CZTS nanoparticles by a hydrothermal route. Material Science and Engineering, 338, 3-6.

Fernandes, M., Cao, L., Zhang, B. L. & Jiang, J. C. (2009).One step deposition of CZTS thin films for solar cells. Sol. Ener. Mat. Sol. Cells, 117, 81-86.

Ge, J., Jiang, J., Yang, P. X., Peng, C., Huang, Z., Zuo, S., Yang, L. & Chuab, J. (1998). A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnZ4/Mo thin film solar cell. Sol. Ener. Mat. Sol. Cells, 125, 20-26.

Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., Maw, W. S., Fukano, T., Ito, T. & Motohiro, T. (2008). Enhanced conversion efficiencies of CZTS-based thin film solar cells by using preferential etching technique. Applied Physics Express, (4), 412-415.

Li, J. B., Chawla, V. & Clemens, B. M. (2012).Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy. Adv Mater, 24, 720-723.

Nagoya, K. V., Pawara, S. M., Shinb, S, W., Moona, J. H. & Kima, P. S. (2010). Electrosynthesis of CZTS films by sulfurization of CZT precursor: effect of soft annealing treatment. Appl. Surf. Sci., 238, 74-80.

Price, D. B., Mitzi, O., Gunawan, T. K. & Wang, K. (1999). The path towards a high performance solution-processed kesterite CZTS. Sol. Ener. Mat. Sol. Cells, 95, 1421-1436.

Roy, A., Sujatha Devi, P., Karazhanov, S., Mamedov, D., Kumar Mallick, T. & Sundaram, S. (2018). A Review on Applications of Cu2ZnSnS4 as Alternative Counter Electrodes in Dye-Sensitized Solar Cells.AIP Advances, 8, 701-707.

Schäfer, W. & Nitsche, R. (1974). Tetrahedral quaternary chalcogenides of the type Cu2–II–IV–S4 (Se4). Mater. Res. Bull, 9, 645–654.

Shin, S. W., Pawar, S.M., Park, C. Y., Yun, J. H., Moon, J., Kim J. H. & Lee, J. Y. (2011). Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol Energy Mater Sol Cells, 95(12) 3202–3206.

Tanaka, T., Kawasaki, D., Nishio, M., Guo, Q. & Ogawa, H. (2006).Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys Status Solidi C, 3(8) 2844–2847.

Tiong, V. T., Hreid, T., Will, G., Bell, J. & Wang, H. (2014). Polyacrylic acid assisted synthesis of CU2ZnSnS4 by hydrothermal method. Science of Advanced Materials, 6(7), 1467-1474.

Zheng, X., Liu, Y., Zhang, N., Hou, J., Zhao, G. & Fang, Y. (2019). Fabrication of Cu2ZnSn(S,Se)4 thin film solar cell devices based on printable nano-ink. Bull. Mater. Sci., 1(42), 68.

Most read articles by the same author(s)