Optimisation of PCBM on Al2O3 Electron Transport Layer for Improved Performance of Perovskite Solar Cells Using SCAPS 1D

Main Article Content

Adamu Ahmed Goje
Norasikin Ahmad Ludin
Muhiddin Ahmad Sheriff
Mohammed Waziri Zanna
Mustapha Isah

Abstract

Despite strides in perovskite solar cell efficiency, hurdles hamper industrialization and commercialization. Stability issues, limited electron extraction, and high charge recombination rates cause rapid degradation. Researchers target perovskite material enhancement, using SCAPS software to optimize the electron transport layer (ETL) and introduce Aluminum oxide (Al2O). This aims to boost electron extraction, cut recombination losses, and enhance overall stability. Common ETLs like [6,6]-phenyl C61 butyric acid methyl ester/Aluminum oxide (PCBM/Al2O3) are standard, aiding electron transportation from the perovskite to the electrode. Our study focuses on an n-i-p planar lead-free heterostructure PSC setup, comprising Glass/Fluorine-doped Tin Oxide (FTO), Al2O3/PCBM (ETL), methyl ammonium lead iodide (CH3NH3PbI3) as the absorber, Spiro-OMeTAD as the Hole Transport Layer (HTL), and silver (Ag) as the electrode. Optimization efforts included a 100 nm absorber layer and 300 K temperature, considering ETL thickness and defect density. The PSC's defect density was inversely linked to its absorption coefficient (alpha). Using solely Al2O3 layer achieved a power conversion efficiency (PCE) of 10.87%, a current density (Jsc) of 31.62 mA/cm2, an open circuit voltage (Voc) of 0.551V, and a fill factor (FF) of 61.39%.  In contrast, employing optimized Al2O3/PCBM ETL led to improved performance, yielding a PCE of 20.61%, a Jsc of 37.23 mA/cm2, a Voc of 0.569 V, and an FF of 68.11%. Additionally, an inverse relationship emerged between FF, ETL thickness, and 300 K temperature.

Downloads

Download data is not yet available.

Article Details

How to Cite
Goje, A. A., Ludin, N. A., Sheriff, M. A., Zanna, M. W., & Isah, M. (2023). Optimisation of PCBM on Al2O3 Electron Transport Layer for Improved Performance of Perovskite Solar Cells Using SCAPS 1D. Nigerian Journal of Physics, 32(1), 169–179. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/206
Section
Articles

References

Azri, F., Meftah, A., Sengouga, N., & Meftah, A. (2019). Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar Energy, 181, 372–378. https://doi.org/10.1016/j.solener.2019.02.017

Bag, A., Radhakrishnan, R., Nekovei, R., & Jeyakumar, R. (2020). Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Solar Energy, 196, 177–182. https://doi.org/10.1016/j.solener.2019.12.014

Bouhjar, F., Derbali, L., & Marí, B. (2020). High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Research, 13(9), 2546–2555. https://doi.org/10.1007/s12274-020-2896-4

Brown, T. M., de Rossi, F., di Giacomo, F., Mincuzzi, G., Zardetto, V., Reale, A., & Carlo, A. di. (2021). Progress in flexible dye solar cell materials, processes and devices.

Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J., & Degrave, S. (2021). SCAPS manual.

Danladi, E., Gyuk, P. M., Tasie, N. N., Egbugha, A. C., Behera, D., Hossain, I., Bagudo, I. M., Madugu, M. L., & Ikyumbur, J. T. (2023). Impact of hole transport material on perovskite solar cells with different metal electrode: A SCAPS-1D simulation insight. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16838

Danladi, E., Kashif, M., Ichoja, A., & Ayiya, B. B. (2023). Modeling of a Sn-Based HTM-Free Perovskite Solar Cell Using a One-Dimensional Solar Cell Capacitance Simulator Tool. Transactions of Tianjin University, 29(1), 62–72. https://doi.org/10.1007/s12209-022-00343-w

Deepthi Jayan, K., & Sebastian, V. (2021). Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Solar Energy, 217, 40–48. https://doi.org/10.1016/j.solener.2021.01.058

Erazo, E. A., Gómez, M., Rios, L., Patiño, E. J., Cortés, M. T., & Ortiz, P. (2021). Electrodeposited PEDOT: PSS-Al2O3 improves the steady-state efficiency of inverted perovskite solar cells. Polymers, 13(23). https://doi.org/10.3390/polym13234162

Goje, A. A., Ludin, N. A., Teridi, M. A. M., Syafiq, U., Ibrahim, M. A., Nawab, F., & Syakirin, A. A. (2023). Design and Simulation of Lead-free Flexible Perovskite Solar cell Using SCAPS-1D. IOP Conference Series: Materials Science and Engineering, 1278(1), 12004.

Haidari, G. (2019). Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Advances, 9(8). https://doi.org/10.1063/1.5110495

Katubi, K. M., Shiong, N. S., Pakhuruddin, M. Z., Alkhalayfeh, M. A., Abubaker, S. A., & Al-Soeidat, M. R. (2023). Over 35% efficiency of three absorber layers of perovskite solar cells using SCAPS 1-D. Optik, 171579.

Khalid Hossain, M., Humaun, M., Rubel, K., Toki, G. F. I., Alam, I., Rahman, F., & Bencherif, H. (2021). Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks.

Kuang, Y., Zardetto, V., van Gils, R., Karwal, S., Koushik, D., Verheijen, M. A., Black, L. E., Weijtens, C., Veenstra, S., Andriessen, R., Kessels, W. M. M., & Creatore, M. (2018). Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells. ACS Applied Materials and Interfaces, 10(36), 30367–30378. https://doi.org/10.1021/acsami.8b09515

Lee, M., Choi, E., Soufiani, A. M., Lim, J., Kim, M., Chen, D., Green, M. A., Seidel, J., Lim, S., Kim, J., Dai, X., Lee-Chin, R., Zheng, B., Hameiri, Z., Park, J., Hao, X., & Yun, J. S. (2021). Enhanced Hole-Carrier Selectivity in Wide Bandgap Halide Perovskite Photovoltaic Devices for Indoor Internet of Things Applications. Advanced Functional Materials, 31(16). https://doi.org/10.1002/adfm.202008908

Lin, L., Jiang, L., Qiu, Y., & Yu, Y. (2017). Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices and Microstructures, 104, 167–177. https://doi.org/10.1016/j.spmi.2017.02.028

Mandadapu, U. (2017). Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D. Indian Journal of Science and Technology, 10(1), 1–8. https://doi.org/10.17485/ijst/2017/v11i10/110721

Mandadapu, U., Vedanayakam, S. V., & Thyagarajan, K. (2022.). Numerical Simulation of Ch 3 Nh 3 PbI 3-X Cl x Perovskite solar cell using SCAPS-1D. www.ijesi.org

Raga, S. R., & Fabregat-Santiago, F. (2013). Temperature effects in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 15(7), 2328–2336. https://doi.org/10.1039/c2cp43220j

Reyes, A. C. P., Lázaro, R. C. A., Leyva, K. M., López, J. A. L., Méndez, J. F., Jiménez, A. H. H., Zurita, A. L. M., Carrillo, F. S., & Durán, E. O. (2021). Study of a lead-free perovskite solar cell using CZTS as HTL to achieve a 20% PCE by SCAPS-1D simulation. Micromachines, 12(12). https://doi.org/10.3390/mi12121508

Slami, A., & Belkaid, A. B. (2020 a). Numerical Study of Based Perovskite Solar Cells by SCAPS-1D Solar cells View project Solar cells View project. https://www.researchgate.net/publication/337797426

Slami, A., & Belkaid, A. B. (2020 b). Numerical Study of Based Perovskite Solar Cells by SCAPS-1D Solar cells View project Solar cells View project. https://www.researchgate.net/publication/337797426

Slami, A., & Merad, L. (2022). Numerical Study of Based Perovskite Solar Cells by SCAPS-1D.

Tan, K., Lin, P., Wang, G., Liu, Y., Xu, Z., & Lin, Y. (2016 a). Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics, 126, 75–80. https://doi.org/10.1016/j.sse.2016.09.012

Tan, K., Lin, P., Wang, G., Liu, Y., Xu, Z., & Lin, Y. (2016 b). Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics, 126, 75–80. https://doi.org/10.1016/j.sse.2016.09.012

Wang, K. L., Zhou, Y. H., Lou, Y. H., & Wang, Z. K. (2021). Perovskite indoor photovoltaics: opportunity and challenges. In Chemical Science (Vol. 12, Issue 36, pp. 11936–11954). Royal Society of Chemistry. https://doi.org/10.1039/d1sc03251h

Yang, D., Zhang, X., Wang, K., Wu, C., Yang, R., Hou, Y., Jiang, Y., Liu, S., & Priya, S. (2019). Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Letters, 19(5), 3313–3320. https://doi.org/10.1021/acs.nanolett.9b00936

Most read articles by the same author(s)