Growth rate of AL2O3 Thin Film by Liquid Phase Deposition as an Anti-reflection Coating Layer on Crystalline Silicon for Solar Cell Applications
Main Article Content
Abstract
The fabrication of photovoltaic (PV) device requires that surface reflectance of solar cells has to be minimized to achieve higher photo-conversion efficiency (PCE). Antireflection coating layer is deposited on the surface of a p-type crystalline silicon material to reduce the surface reflections of solar radiation and increase its absorption for efficient solar cell application. In this work, aluminum oxide thin film by liquid phase deposition (LPD-Al2O3) is synthesized from combined solution of aluminum sulfate octadecahydrate (Al2(SO4)3·18H2O) and sodium carbonate (NaHCO3) with pH of 3.1. Some samples of p-type (100) crystalline silicon (c-Si) wafers of resistivity 1 – 10 mΩ were immersed inside the growth liquid of LPD-Al2O3 thin film for 1hr – 2.5 hours. This is followed by annealing the samples at a temperature of 450oC, the deposition rate is faster in the range 1 – 1.5 hours is about 35nm/hr. As the growth time increases, the growth rate of the film decreases and remains nearly constant at about 10 nm/hour at 1 – 2 hours. When the growth time exceeds 2 hours, the film thickness remains unchanged showing that the liquid has lost in growth ability. The weighted average reflection (%) of planar c-Si is reduced from 44.9 % to 29.6 % after deposition of the LPD-Al2O3 for 2.5 hours growth time, indicating a 34.1 % reduction in reflection within wavelength region of 300–1100 nm. While the root means square (RMS) surface roughness of 36.5 nm was also recorded at the highest growth time of 2.5 hours. This shows the effect of thicker LPD-Al2O3 thin film layer increases the anti-reflecting coating property of the material.
Downloads
Article Details
References
Angarita, G., Palacio, C., Trujillo, M., & Arroyave, M. (2017). Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method. Journal of Physics: Conference Series, 850(1). https://doi.org/10.1088/1742-6596/850/1/012022
Balaji, P., Dauksher, W. J., Bowden, S. G., & Augusto, A. (2020). Improving surface passivation on very thin substrates for high efficiency silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 216. https://doi.org/10.1016/j.solmat.2020.110715
Barreda, A. I., Saiz, J. M., González, F., Moreno, F., & Albella, P. (2019). Recent advances in high refractive index dielectric nanoantennas: Basics and applications. In AIP Advances 9(4). American Institute of Physics Inc. https://doi.org/10.1063/1.5087402
Castillo, M. L., Ugur, A., Sojoudi, H., Nakamura, N., Liu, Z., Lin, F., Brandt, R. E., Buonassisi, T., Reeja-Jayan, B., & Gleason, K. K. (2017). Organic passivation of silicon through multifunctional polymeric interfaces. Solar Energy Materials and Solar Cells, 160, 470–475. https://doi.org/10.1016/j.solmat.2016.10.050
Chai, J. Y. H., Wong, B. T., & Juodkazis, S. (2020). Black-silicon-assisted photovoltaic cells for better conversion efficiencies: a review on recent research and development efforts. In Materials Today Energy, 18, Elsevier Ltd. https://doi.org/10.1016/j.mtener.2020.100539
Chen, H., Shimai, S., Zhao, J., Mao, X., Zhang, J., Zhou, G., & Wang, S. (2021). Highly oriented α- Al2O3 transparent ceramics shaped by shear force. Journal of the European Ceramic Society, 41(6), 3838–3843. https://doi.org/10.1016/j.jeurceramsoc.2021.01.014
Cibert, C., Hidalgo, H., Champeaux, C., Tristant, P., Tixier, C., Desmaison, J., & Catherinot, A. (2008). Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films, 516(6), 1290–1296. https://doi.org/10.1016/j.tsf.2007.05.064
Ding, S. J., Huang, Y. J., Huang, Y., Pan, S. H., Zhang, W., & Wang, L. K. (2007). High density Al2O3 /TaN-based metal-insulator-metal capacitors in application to radio frequency integrated circuits. Chinese Physics, 16(9), 2803–2808. https://doi.org/10.1088/1009-1963/16/9/051
Dingemans, G., & Kessels, W. M. M. (2012). Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(4), 040802. https://doi.org/10.1116/1.4728205
Fan, Z., Cui, D., Zhang, Z., Zhao, Z., Chen, H., Fan, Y., Li, P., Zhang, Z., Xue, C., & Yan, S. (2021). Recent progress of black silicon: From fabrications to applications. In Nanomaterials, 11(1), 1–26. MDPI AG. https://doi.org/10.3390/nano11010041
Fukushima, Y., Saraie, J., Tabayashi, K., & Shobatake, K. (1994). Photo-CVD of Al2O3 thin films using a D 2 lamp.
Getz, M. N., Povoli, M., & Monakhov, E. (2021). Improving ALD-Al2O3 Surface Passivation of Si using Native SiO x. https://doi.org/10.21203/rs.3.rs-943524/v1
Ghiraldelli, E., Pelosi, C., Gombia, E., Chiavarotti, G., & Vanzetti, L. (2008). ALD growth, thermal treatments and characterisation of Al2O3 layers. Thin Solid Films, 517(1), 434–436. https://doi.org/10.1016/j.tsf.2008.08.052
Hannebauer, H., Schimanke, S., Falcon, T., Altermatt, P. P., & Dullweber, T. (2015). Optimized Stencil Print for Low Ag Paste Consumption and High Conversion Efficiencies. Energy Procedia, 67, 108–115. https://doi.org/10.1016/j.egypro.2015.03.294
Hou, G. J., García, I., & Rey-Stolle, I. (2021). High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Solar Energy, 217, 29–39. https://doi.org/10.1016/j.solener.2021.01.060
Hsu, C. H., Cho, Y. S., Wu, W. Y., Lien, S. Y., Zhang, X. Y., Zhu, W. Z., Zhang, S., & Chen, S. Y. (2019). Enhanced Si Passivation and PERC Solar Cell Efficiency by Atomic Layer Deposited Aluminum Oxide with Two-step Post Annealing. Nanoscale Research Letters, 14. https://doi.org/10.1186/s11671-019-2969-z
Jia, X., Zhou, C., & Wang, W. (2017). Optimization of the Surface Structure on Black Silicon for Surface Passivation. Nanoscale Research Letters, 12(1), 193. https://doi.org/10.1186/s11671-017-1910-6
Lee, S. H., Bhopal, M. F., Lee, D. W., & Lee, S. H. (2018). Review of advanced hydrogen passivation for highly efficient crystalline silicon solar cells. Materials Science in Semiconductor Processing, 79, 66–73. https://doi.org/https://doi.org/10.1016/j.mssp.2018.01.019
Li, D., Ruan, L., Sun, J., Wu, C., Yan, Z., Lin, J., & Yan, Q. (2020). Facile growth of aluminum oxide thin film by chemical liquid deposition and its application in devices. Nanotechnology Reviews, 9(1), 876–885. https://doi.org/10.1515/ntrev-2020-0062
Lin, C. C., Huang, J. J., Wuu, D. S., & Chen, C. N. (2016). Surface passivation property of aluminum oxide thin film on silicon substrate by liquid phase deposition. Thin Solid Films, 618, 118–123. https://doi.org/10.1016/j.tsf.2016.04.011
Musil, J., Blažek, J., Zeman, P., Prokšová, Š., Šašek, M., & Čerstvý, R. (2010). Thermal stability of alumina thin films containing γ- Al2O3 phase prepared by reactive magnetron sputtering. Applied Surface Science, 257(3), 1058–1062. https://doi.org/10.1016/j.apsusc.2010.07.107
Nabhan, A., Taha, M., & Ghazaly, N. M. (2023). Filler loading effect of Al2O3 /TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA). Polymer Testing, 117. https://doi.org/10.1016/j.polymertesting.2022.107848
Özkol, E., Procel, P., Zhao, Y., Mazzarella, L., Medlin, R., Šutta, P., Isabella, O., & Zeman, M. (2020). Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layer. Physica Status Solidi (RRL) – Rapid Research Letters, 14(1), 1900087. https://doi.org/https://doi.org/10.1002/pssr.201900087
Repo, P., Talvitie, H., Li, S., Skarp, J., & Savin, H. (2011). Silicon surface passivation by Al2O3: Effect of ALD reactants. Energy Procedia, 8, 681–687. https://doi.org/10.1016/j.egypro.2011.06.201
Singh, P., Jha, R. K., Singh, R. K., & Singh, B. R. (2018). Preparation and characterization of Al2O3 film deposited by RF sputtering and plasma enhanced atomic layer deposition. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 36(4). https://doi.org/10.1116/1.5023591
Song, S. Y., Kang, M. G., Song, H.-E., & Chang, H. S. (2013). Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 26(10), 754–759. https://doi.org/10.4313/jkem.2013.26.10.754
Viswanath, A. K. (2001). Chapter 3 Surface and interfacial recombination in semiconductors.
Wang, S., Wu, X., Ma, F.-J., Payne, D., Abbott, M., & Hoex, B. (2021). Field-Effect Passivation of Undiffused Black Silicon Surfaces. IEEE Journal of Photovoltaics, 11(4), 897–907. https://doi.org/10.1109/JPHOTOV.2021.3069124
Yan, Y., Li, L., See, T. L., Ji, L., & Jiang, Y. (2013). CO2 laser peeling of Al2O3 ceramic and an application for the polishing of laser cut surfaces. Journal of the European Ceramic Society, 33(10), 1893–1905. https://doi.org/10.1016/j.jeurceramsoc.2013.01.023
Zhang, B., Wang, Y., Han, L., Li, Y., & Liu, A. (2017). Controlling of polarity on the surface passivation mechanism of Al2O3 for black silicon by CLD. Journal of Nano Research, 49, 18–26. https://doi.org/10.4028/www.scientific.net/JNanoR.49.18