SHORT-TERM STUDY OF THE PERFORMANCE OF A PHOTOVOLTAIC MODULE

Main Article Content

N. E. Erusiafe
V. N. Nwaekwu
O. A. Animashaun

Abstract

This study attempts to evaluate the performance of a silicon polycrystalline photovoltaic module without storage (battery) by comparing the solar radiation that falls on it with the energy generated by the module on a daily basis. The efficiency of 50 watts polycrystalline module with fixed load was evaluated for some months in the years 2017 and expression obtained for module efficiency. A model was obtained for calculating the module output from solar irradiation and module temperature. The result obtained show that the module in the field of operation exhibits variation in efficiency from approximately 2% to 7.8% while the module energy output can be predicted from the model obtained with a percentage normalized RMSE of approximately 11%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Erusiafe, N. E., Nwaekwu, V. N., & Animashaun, O. A. (2021). SHORT-TERM STUDY OF THE PERFORMANCE OF A PHOTOVOLTAIC MODULE. Nigerian Journal of Physics, 30(2), 99–107. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/100
Section
Articles

References

Abdullahi, N., Saha, C. and Jinks, R. (2017). Modelling and performance analysis of a silicon PV module. Journal of Renewable and Sustainable Energy, Volume 9, Issue 3, 10.1063/1.4982744, Published by AIP Publishing., 033501 (2017); https://doi. org/10.1063/1.4982744

Bambrook, S. M., Sproul , A. B. (2012). Maximising the energy output of a PVT air system. J. Solar Energy, Volume 86, Issue 6; 1857-1871.

Billinton, R. and Karki, R. (2001).Maintaining supply reliability of small isolated power system using renewable energy. Proceedings Generation, Trans-mission and Distribution. IEEE, (November, 2001) ISSN:1350-2360 Vol.148.

Bimenyimana, S., Asemota, G. N. O. and Lingling, L. (2017).Output Power Prediction of Photovoltaic Module Using Nonlinear Autoregressive Neural Network. Journal of Energy, Environmental & Chemical Engineering 2017; 2(4): 32-40. http:// www.sciencepublishinggroup.com/j/jeece doi: 10. 11648/j.jeece.20170204.11 Available from: https:// www.researchgate.net/publication/319135979_Output_Power_Prediction_of_Photovoltaic_Module_Using_Nonlinear_Autoregressive_Neural_Network [accessed Oct 13 2021].

Bimenyimana, S., Asemota, G. N. O., and Ihirwe, P. J. (2018).Optimization Comparison of Stand-Alone and Grid-Tied Solar PV Systems in Rwanda.Open Access Library Journal,Vol.5 No. 5, May 23, 2018.

Boukebbous, S.E., Benbaha, N., Bouchakour, A. et al. Experimental performance assessment of photo-voltaic waterpumping system for agricultural irrigation in semi-arid environment of Sebseb-Ghardaia, Algeria. Int J Energy Environ Eng (2021). https://doi.org/10.1007/s40095-021-00435-8.

Chaibi, Y., Allouhi, A., Salhi, M., El-jouni, A. (2019).Annual performance analysis of different maximum power point tracking techniques used in photo-voltaic systems. Prot. Control Mod.Power Syst4, 15 (2019). <https://doi.org/10.1186/s41601-019-0129-1>

Erdil, E., Ilkan, M. and Egelioglu, F. (2008).An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system. Energy 33(8):1241-1245. DOI: <10.1016/j.energy. 2008.03.005>

Chuluunsaikhan, T., Nasridinov, A., Choi, W. S., Choi, D. B., Choi, S. H. and Kim, Y. M. (2021). Predicting the Power Output of Solar Panels based on Weather and Air Pollution Features using Machine Learning. Journal of Korea Multimedia Society Vol. 24, No. 2, February 2021. pp. 222-232. https://doi.org/10.9717/kmms.2021.24.2.222

Faye, I., Ndiaye, A., Kobor, D. and Thiame, M. (2021).Evaluation of PV performance prediction model in tropical environment in Senegal. International Journal of Physical Sciences, Academic Journals.Vol. 16(2), pp. 68-78, April-June, 2021. DOI: 10.5897/IJPS2019.4836. http://www.academicjournals.org/IJPS

Fondriest Environmental, Inc. “Solar Radiation and Photosynethically Active Radiation.” Fundamentals of Environmental Measurements. 21 Mar. 2014. Web.<https://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/>. [accessed on 11th October, 2021]

Hosseini, R., Hosseini, N., Khorasanizadeh, H. (2011). An experimental study of combining a photovoltaic system with a heating system. Proc. World Renewable Energy Congress, Linkoping, Sweden.<https://www.researchgate.net/publication/259495673_An_Experimental_Study_of_Combining_a_Photovoltaic_System_with_a_Heating_System> [accessed Oct 07 2021].

Iqbal, M. (1983).An introduction to solar radiation. Copyright © 1983, by Academic Press Canada, 55 Barber Greene Road, Don Mills, Ontario M3C 2A1.

Kim, G. G., Choi, J. H., Park, S. Y., Bhang, B. G., Nam, W. J., Cha, H. L., Park, N. and Ahn, H.(2019). Prediction Model for PV Performance With Correlation Analysis of Environmental Variables. IEEE Journal of Photovoltaics, Vol. 9, No. 3, PP832-841.

Kurtz, S., Riley, E., Newmiller, J., Dierauf, T., Kimber, A., McKee, J., Flottemesch, R., Krishnani, P. (2013).Analysis of Photovoltaic System Energy Performance Evaluation Method.US Department of Energy, National Renewable Energy Laboratory (NREL).www.nrel.gov/publications (Accessed on 1st October, 2021).

Mansur, T M N T., Baharudin, N H., and Ali, R. (2018).Design and Performance Analysis of Solar PV DC Power System for Disaster Relief Centre using PV syst. J. Phys.: Conf. Ser.1019 012029.

Mawoli, M., Anene, E. C., Sani, J. and Abdullahi, M. (2017). Effect of Cooling and Determination of Temperature Coefficients of Solar Photovoltaic (PV) Module Using Linear Correlation Model. Nigerian Journal of Solar Energy, Solar Energy Society of Nigeria (SESN) 2017. Vol. 28, pp. 49-55.

Moorthy, J.G., Manual, S., Moorthi, S., Raja, P. (2020). Performance analysis of solar PV based DC optimizer distributed system with simplified MPPT method. SN Appl. Sci.2, 220 (2020).https://doi.org/10.1007/s42452-020-2010-2

Rohouna, W.M., Molokhia, I.M. and Esuri, A.H. (2007).Comparative study of different PV modules configuration reliability. Desalination 209 (1) 122-128, Science Direct, Available at http//www.sciencedirect.com/science/article/pii/S0011916407001117.

Shapsough, S., Dhaouadi, R. and Zualkernan, I. (2019).Using Linear Regression and Back Propagation Neural Networks to Predict Performance of Soiled PV Module. The 9th International Conference on Sustainable Energy Information Technology (SEIT) August 19-21, 2019, Halifax, Canada, Procedia Computer Science, 155 (2019) 463-470.

Sisodia, A. K. and Mathur, R. K., 2020, Performance Analysis of Photovoltaic Module by Dust Deposi-tion in Western Rajasthan. Indian Journal of Science and Technology, Volume: 13, Issue: 8, pp. 921-933.

Smets, A. H. M., Jäger, K., Isabella, O., Van Swaaij, R.A.C.M.M., Zeman, M. (2016).Solar Energy – The physics and engineering of photovoltaic conversion, technologies and systems. February 2016. 1st Edition published by UIT Cambridge Ltd. P. O. Box 145, Cambridge, England. ISBN: 9781906860325.

Wansah, J.F., Udounwa, A.E., Essien, K.E. and Akpabio, M.S. (2015).Design, Installation and Performance Evaluation of Solar Photovoltaic Water Pumping System for Ibiaku Issiet, Nigeria. Nigerian Journal of Solar Energy, Solar Energy Society of Nigeria (SESN), Vol. 26, pp. 77-83.

Wirth, H. Crystalline Silicon PV Module Technology in Semiconductors and Semimetals; Advances in Photovoltaics: Part 2, 2013 Elsevier Inc., Volume 89, 2013, pp. 135-197.

Yadav, A. K. and Chandel, S.S. (2017).Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models. Renewable and Sustainable Energy Reviews, Elsevier, Vol. 77(C), pp. 955-969.