Extension of Mott Formula in the Linearized Boltzmann Transport Equation to the Study of Thermoelectric Power of Electron in Metal
Main Article Content
Abstract
The focus of this paper is to compute and study thermoelectric power of electron in metals using Mott formula based on free electron theory to get an insight on the effect of strain on electron thermoelectric power in metals. Electron density parameter of strained metals and Poisson ratio of metals is obtained and used in this work unlike some researchers that assumed a value for Poisson ratio of all metals. This assumption make the electron density parameter of strained and unstrained metals to be equal and then reduce the computation to only one input parameter. The experimental and simulated value are in good agreement. This agreement is due to the usefulness of free electron theory in theoretical forecast of some properties of metals. The Poisson ratio is involved in simulation. Result obtained revealed that thermoelectric power of electron in metals goes up as the electron density parameter rises due to high-order contributions from electron scattering theory. Electron thermoelectric power in metals increases as the temperature increases due to electron thermal excitation from their mean position. The electron thermoelectric power rises as strain rises for metals.
Downloads
Article Details
References
Amir Yadollah Faraji, Abhijit Date, Randeep Singh and Aliakbar Akbarzadeh (2014): Base-load thermoelectric power generation using evacuated tube solar collector and water storage tank. Elsevier. https://DOI:10.1016/j.egypro.2014.10.178.pp 2112-2120.
Animalu, A.O.E. (1977). Intermediate quantum Mechanics of crystalline solids. Eagle wood Cliffs, New Jersey. ISBN:9780134707990..
Ashcroft N.W. and Mermin D.N. (1976): Solid State Physics. Holt. Rinchart and Winston. New York. ISBN: 978-0030839931.
R H Deet and A M Guenault (1977): Thermoelectric power of homovalent noble metal alloys: II. Gold-based alloys. J. Phys. F: Metal Phys. Vol. 7(1). Printed in Great Britain. https://DOI:10.1088/0305-4608/7/1/024.
C.A. Domenicali and F.A. Otter (1954): Thermoelectric Power and Electron Scattering in Metal Alloys. Physical Review. Publish by American Physical Society. Vol. 95 (5). USA. DOI:https://doi.org/10.1103/PhysRev.95.1134.
Efthimios Kaxiras (2003): Atomic and Electronic Structure of Solids. Published by the press syndicate of the University of Cambridge UK. ISBN-13:978-0-511-07809-5.
Elliott, S.R. (1997): The Physics and Chemistry of Solids. Trinity College, University of Cambridge UK. ISBN: 9780471981954.
James Patterson and Bernard Bailey, 2010: Solid-State Physics, Introduction to the Theory. Second Edition. Springer, Springer Heidelberg Dordrecht London New York. DOI 10.1007/978-3-642-02589-1.
Kachhava, C.M. (1992): Solid State Physics. India: Tata McGraw Hill Publishing Company Ltd. ISBN: 0074517074, 9780074517079.
Kakani, S. L. and Amit Kakani (2004): Material Science, Publish by New Age International Limited. ISBN (13): 978-81-224-2656-4.
J. Kokalj and Ross H. McKenzie (2021): Enhancement of the thermoelectric power by electronic correlations in bad metals: a study of the Kelvin formula. doi.org/10.1103/PhysRev(B).91.125143.
Kittel C. (1976): Introduction to solid state Physics. Fifth edition. John Wiley and sons. Inc. New York. ISBN:0-471-41526-X.
Madelung, O. (1995): Introduction to Solid State Theory (2nd Springer series in Solid State Science). Publish by Spriger. Verlag Berlin Heidelberg. ISBN:3-540-60443-X.
Pillai S. O. (2010): Solid State Physics. Sixth edition. New Age International Publisher. India, Delhi. ISBN-13:978-1906574109.
Rogalski M. S. and Palmer S. B. (2000): Solid State Physics. Published by the Gordon and Breach Science Publishers Imprint (Overseas Publishers Association). ISBN:90-5699-273-2.online: https://doi.org/10.1201/9781482283037.
John E. Robinson (1967): Thermoelectric power in nearly free electron model. Physical Review Journal Archive. Publish by American Physical Society. USA. DOI:https://doi.org/10.1103/PhysRev.161.533.
Rima Aridi, Jalal Faraj, Samer Ali, Thierry Lemenat and Mahmoud Khaled (2021): Thermoelectric power generator: State-of-the-art. Heat recovery method and challenges, Multidisciplinary Digital Publishing Institute, Switzerland. Pp359-386. https://doi.org/10.3390/electricity2030022.
V.B. Stepanoy, Yu. A. Kolesnichenko and A.L.Solovjov (2023): Thermoelectric power in high-temperature superconductors: Theory and experiment. Low temperature Physics. Publish by American institute of Physics. Vol. 49(8). USA. Pp911-935. https://doi.org/10.1063/10.0020159.
Yuto Uematsu, Takafumi Ishibe, Takaaki Mano, Akihiro Ohtake, Hideki T. Miyazaki, Takeshi Kasaya and Yoshiaki Nakamura (2024): Anomalous enhancement of thermoelectric power factor in multiple two-dimensional electron gas system. Nature communication journal, Japan. https://doi.org/10.1038/s41467-023-44165-3
Uichiro Mizutani (2003): Introduction to the Electron Theory of Metals, Published by Cambridge University Press, New York, USA. ISBN: 0 521 58334 9, 0 521 58709 3
Yongjie He, Shaowei Li, Rui Chen, Xu Liu, George Omololu Odunmbaku, Wei Fang, Xiaoxue Lin, Zeping Ou, Qianzhi Gou, Jiacheng Wang, Nabonswende Aida Nadege Ouedraogo, Jing Li, Meng Li, Chen Li, Yujie Zheng, Shanshan Chen, Yongli Zhou, and Kuan Sun (2023): Ion-Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density. Journal of Nano-Micro Letters. Vol. 15. Netherlands. https://doi.org/10.1007/s40820-023-01077-7.
Yuqiao Zhang, Bin Feng, Hiroyuki Hayashi, Cheng-Ping Chang, Yu-Miin Sheu, Isao Tanaka, Yuichi Ikuhara and Hiromichi Ohta (2018): Double thermoelectric power factor of a 2D electron system. Nature communication journal, Japan. https://DOI:10.1038/s41467-018-04660-4.