Application of Transition Metal Dichalcogenides in Electrocatalytic Splitting of Water for Hydrogen Production: A Review

Authors

  • Sani Alhassan Shamsuddeen Umaru Musa Yar'adua University, Katsina
  • Mahmud Abdulsalam Umaru Musa Yaradua University, Katsina
  • Abdullahi Tanimu Umaru Musa Yar’adua University, Katsina

DOI:

https://doi.org/10.62292/10.62292/njp.v34i2.2025.366

Keywords:

Carbon Emissions, Electrocatalysts, Fossil fuels, Green Hydrogen, Transition Metal Dichalcogenides

Abstract

The world aims to reduce carbon emissions by transition to alternative and renewable energy sources such as green hydrogen, which is cleaner and more sustainable for various applications compares to the traditional fossil fuels. Electrocatalytic splitting of water is one of the best promising method for hydrogen production due to its affordability, sustainability, and eco-friendliness. Transition metal dichalcogenides (TMDs) have emerged as the essential electrocatalysts for this process. This paper presents a review on the progress in TMDs as electrocatalysts. It starts with a concise discussion on the overview of TMDs and their unique properties that made them attractive in the electrocatalysis of water. However, various descriptors of a good electrocatalyst were elaborated as well as some of the ways of improving the catalytic activity of the existing TMDs-based electrocatalysts. The methods of synthesis of the TMDs-based electrocatalysts were also explored. The paper concludes by pointing out some of the challenges that hinder the progress of the field and future directions that will greatly contribute toward improving the entire field of electrocatalytic splitting of water for effective hydrogen generation.

Downloads

Download data is not yet available.

References

Ambrosi, A., Shi, R.R.S. and Webster, R.D. (2020). 3D-printing for electrolytic processes and electrochemical flow systems. Journal of Materials Chemistry A,8 (42), 21902-21929.

Ataca, C., Şahin, H. and Ciraci, S. (2012). Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. Journal of Physical Chemistry C,116(16), 8983-8999.

Baig, N., Kammakakam, I. and Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2,1821-1871.

Bonde, J., Moses, P.G., Jaramillo, T. F., Nørskov, J. K. and Chorkendorff I. (2009). Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussion, 140, 219-231.

Cao, X., Tang, Y., Duus, J. Ø., and Chi, Q. (2019). Engineering two-dimensional transition metal dichalcogenide electrocatalysts for water splitting hydrogen generation. In Handbook of Ecomaterials,1845-1873, Springer. https://doi.org/10.1007/978-3-319-68255-6_174

Chen, Y., Yang, K., Jiang, B., Li, J., Zeng, M. and Fu, L., (2017). Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Material Chemistry A, 5, 8187-8208.

Chen, Z., Cummins, D., Reinecke, B. N., Clark, E., Sunkara, M. K., Jaramillo, T. F. (2011). Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Letters, 11, 4168−4175.

Chen, X., Wang, Z., Qiu, Y., Zhang, J., Liu, G., Zheng, W., et al. (2016). Controlled growth of vertical 3D MoS2(1− x) Se2x nanosheets for an efficient and stable hydrogen evolution reaction. Journal of Materials Chemistry A, 4, 18060-18066.

Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, KP. and Zhang, H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry,5, 263–275. https://doi.org/10.1038/nchem.1589.

Chia, X., Ambrosi, A., Lazar, P., Sofer, Z., Pumera, M. (2016). Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). Journal of Materials Chemistry A, 4(37), 14241-14253.

Dang, L. N., Liang, H. F., Zhuo, J. Q., Lamb, B. K., Sheng, H. Y., Yang, Y. and Jin, S. (2018). Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis. Chemistry of Materials, 30(13), 4321–4330. doi: 10.1021/acs.chemmater.8b01334.

Dhand, C., Dwivedi, N., Loh, X.J., Ying, ANJ., Verma, N.K., Beuerman, R.W, et al. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Advances,5(127), 105003-105037.

Ding, Q., Song, B., Xu, P. and Jin S. (2016). Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem, 1(5), 699-726.

Ding, Y., Wang, Y., Ni, J., Shi, L., Shi, S., Tang, W. (2011). First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B, 406(11), 2254-2260.

Ding, Q., Zhai, J., Cabán-Acevedo, M., Shearer, M. J., Li, L., Chang, H.-C., Tsai, M.-L., Ma, D., Zhang, X., Hamers, R. J., He, J.-H. and Jin, S. (2015). Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids. Advanced Materials, 27(41), 6511-6518.

Dong, Y., Dang, J., Wang, W., Yin, S. and Wang, Y. (2018). First-principles determination of active sites of Ni metal-based electrocatalysts for hydrogen evolution reaction. ACS Applied Materials and Interfaces, 10(46), 39624–39630.

Dresselhaus, M. S. and Thomas, I. L. (2001). Alternative energy technologies. Nature, 414, 332-337.

Dresp, S., Dionigi, F., Klingenhof, M. and Strasser, P. (2019). Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Letters,4(4), 933–942.

Er, D., Ye, H., Frey, N.C., Kumar, H., Lou, J. and Shenoy, V.B. (2018). Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides. Nano Letters,18(6), 3943-3949. https://doi.org/10.1021/acs.nanolett.8b01335.

Faber, M. S. and Jin, S. (2014). Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Sciences,7(11), 3519-3542.

Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S., Jin, S. (2014). Journal of Physical Chemistry C,118(37), 21347–21356.

Faid, A.Y., A. Barnett, O., Seland, F. and Sunde, S. (2021). NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis. Electrochimica. Acta, 371(12), 137837. http://dx.doi.org/10.1016/j.electacta.2021.137837

Fu, Q., Yang, L., Wang, W., Han, A., Huang, J., Du, P., Fan, Z., Zhang, J. and Xiang, B. (2015). Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable band gap. Advanced Materials, 27, 4732-4738.

Fu, Q., Han, J., Wang, X., Xu, P., Yao, T., Zhong, J., Zhong, W., Liu, S., Gao, T., Zhang, Z., Xu, L. and Song, B. (2020). 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Advanced Materials, 1907818. https://doi.org/10.1002/adma.201907818.

Gao, G., Sun, Q. and Du, A. (2016). Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. Journal of Physical Chemistry C, 120, 16761−16766.

Gao, M.R., Chan, M. and Sun, Y. (2015). Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications 6, 7493. https://doi.org/10.1038/ncomms8493

Ghorbani-Asl, M., Enyashin, A.N., Kuc, A., Seifert, G. and Heine, T. (2013). Defect-induced conductivity anisotropy in MoS2 monolayers. Physical Review B, 88, 245440. DOI: https://doi.org/10.1103/PhysRevB.88.245440

Gholamvand, Z., McAteer, D., Backes, C., McEvoy, N., Harvey, A., Berner, N.C., Hanlon, D., C. Bradley, I., Godwin, A., Rovetta, M. E., Lyons, G., Duesberg, G. S. and Coleman, J. N. (2016). Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale, 8, 5737-5749.

Gileadi, E. and Kirowa-Eisner, E. (2005). Concerning the Tafel equation and its relevance to charge transfer in corrosion. Corrosion Science, 47,(12), 3068-3085.

Giuffredi G., Asset T., Liu Y., Atanassov P., and Di Fonzo F. (2021).Transition metal chalcogenides as a versatile and tunable platform for catalytic CO2 and N2 electroreduction. ACS Materials Au,1, 6−36.

Govindaraju, V.R., Sreeramareddygari, M., Hanumantharayudu, N.D., Devaramani S., Thippeswamy, R., Surareungchai, WJEP, et al. (2020). Solvothermal decoration of Cu3SnS4 on reduced graphene oxide for enhanced electrocatalytic hydrogen evolution reaction. Environmental progress and sustainable energy,e13558. https://doi.org/10.1002/ep. 13558.

Guo, C., Jiao, Y., Zheng, Y., Luo, J., Davey, K. and Qiao, S.-Z. (2019). Intermediate modulation on noble metal hybridized to 2D metal-organic framework for accelerated water electrocatalysis. Chem,5, 2429-2441.

Han, S. A, Bhatia, R. and Kim S.-W. (2015). Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2,17. https://doi.org/10.1186/s40580-015-0048-4

He, H.-Y., He, Z. and Shen Q. (2021). Novel assembly of Janus RGO/1T-SeMoS nanosheets structures showing high-efficient electrocatalytic activity for hydrogen evolution. Colloids and Interface Science Communications, 45(17):100509. http://dx.doi.org/10.1016/j.colcom.2021.100509

He, Q., Wan, Y., Jiang, H., Wu, C., Sun Z., Chen, S., et al. (2018). High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano research,11,1687–1698. https://doi.org/10.1007/s12274-017-1786-x

Henckel, D. A., Lenz, O. M., Krishnan, K. M. and Cossairt, B. M. (2018). Improved HER catalysis through facile, aqueous electrochemical activation of nanoscale WSe2. Nano Letters, 18, 2329-2335.

Hernandez Ruiz, K., Wang, Z., Ciprian, M., Zhu, M., Tu, R., Zhang, L, et al. (2022). Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: strategies and applications. Small science, 2(1), 2100047. http://dx.doi.org/10.1002/smsc.202100047

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, Muthiga, N., Bradbury, R. H., Dubi, A., Hatzioloset, M. E. al., (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742.

Huang, W., Zhou, D., Qi, G. and Liu X. (2021). Fe-doped MoS2 nanosheets array for high-current-density seawater electrolysis. Nanotechnology, 32, 415403. https://doi.org/0.1088/1361-6528/ac1195

Huang, H., Hu, G., Hu, C. and Fan, X. (2022). Enhanced hydrogen evolution reactivity of T’-phase tungsten dichalcogenides (WS2, WSe2, and WTe2) Materials: A DFT Study. International Journal of Molecular Sciences, 23, 11727. https://doi.org/10.3390/ijms231911727.

Huang, W. and Li, W.-X. (2019). Surface and interface design for heterogeneous catalysis. Physical Chemistry Chemical Physics, 21, 523–536.

Idrees, M., Din, H.U., Rehman, S.U., Shafiq, M., Saeed, Y., Bui, H.D., Nguyen, C.V. and Amin B. (2020). Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Physical Chemistry Chemical Physics, 22,10351.

Jaberi S.Y.S., Ghaffarinejad A. and Khajehsaeidi Z. (2021). The effect of annealing temperature, reaction time, and cobalt precursor on the structural properties and catalytic performance of CoS2 for hydrogen evolution reaction. Internal Journal of Hydrogen Energy, 46, 3922.

Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S. and Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 317, 100−102.

Jiao, Y., Zheng, Y., Jaroniec, M. and Qiao, S. Z. (2015). Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Review, 44, 2060.

Jiang A., Zhang, B., Li, Z., Jin, G. and Hao, J. (2018). Vanadium-Doped WS2 Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry- an Asian Journal, 13(11), 1438-1446.

Ji, Y., Yang, M.,Lin, H., Hou, T., Wang, L., Li, Y. and Lee, S.-T. (2018). Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. Journal of Physical Chemistry C, 122, 3123.

Kam, K.K. and Parkinson, B.A. (1982). Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. Journal of Physical Chemistry, 86(4), 463-467.

Kaur, S.P. and Kumar, T. J. D. (2021). Tuning structure, electronic, and catalytic properties of non-metal atom doped Janus transition metal dichalcogenides for hydrogen evolution. Applied Surface Science,552, 149146.

Kheibar D., Neda S., Fereshteh A., Bahar S., Aida, M., Sana, S.-A., Rouholah, Z.-D. (2023). Metal chalcofenides for sensing applications. Fundamental of sensor technology, 551-589.

Kibsgaard, J., Chen, Z., Reinecke, B. N., Jaramillo, T. F. (2012). Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials,11, 963−969.

Koper, M. T. M. (2013). Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chemical Science, 4, 2710-2723.

Kuc, A., Zibouche, N. and Heine, T. (2011). Covering condensed matter and materials physics influence of quantum confinement on the electronic structure of the transition metal sulfide. Physical Review B: Condensed Matter, 83, 245213.

Kuc, A., Heine, T. and Kis, A. (2015). Electronic properties of transition-metal dichalcogenides. Material Research Society, 40, 577-584. https://doi.org/10.1557/mrs.2015.143

Kunhiraman, A., Bradha, K.M. and Rakkesh R. A. (2021). Nickel-doped two-dimensional molybdenum disulfide for electrochemical hydrogen evolution reaction. Journal of Material Research, 36, 4141.

Li, Y., Abbott, J., Sun, Y., Sun, J., Du, Y., Han, X., Wu, G. and Xu, P. ( 2019). Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Applied Catalysts B, 258, 117952.

Li, J., Liu, P., Qu, Y., Liao, T. and Xiang, B. (2018). WSe2/rGO hybrid structure: A stable and efficient catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 43, 2601-2609.

Li, L., Qin, Z., Ries L., Hong S., Michel, T., Yang J., Salameh, C., Bechelany, M., Miele, P., Kaplan, D., Chhowalla, M. and Voiry, D. (2019). Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano. 13(6),6824-6834. https://doi.org/10.1021/acsnano.9b01583.

Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G. and Dai, H. (2011). MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of American Chemical Society, 133, 7296− 7299.

Li, T. and Galli, G. (2007). Electronic properties of MoS2 nanoparticles. Journal of Physical Chemistry C, 111, 16192-16196.

Li, F. and Xue, M. (2016). Two‐dimensional transition metal dichalcogenides for electrocatalytic energy conversion applications. InTech. https://doi.org/10.5772/63947.

Li, H., Tan Y., Liu, P., Guo, C., Luo, M., Han, J., Lin, T., Huang, F. and Chen, M. (2016). Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Advanced Materials, 28, 8945-8949.

Li, R., Yang, L., Xiong, T., Wu, Y., Cao, L., Yuan D. and Zhou, W. (2017). Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. Journal of Power Sources, 356, 133.

Li, H., Tsai, C., Koh, A. L., Cai, L., Contryman, A. W., Fragapane, A. H., Zhao, J., Han, H. S., Manoharan, H. C., Abild-Pedersen F., Nørskov J. K. and Zheng, X. (2016). Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 15, 48-53.

Liang, J., Ma, F., Hwang, S., Wang, X., Sokolowski, J., Li, Q., Wu, G. and Su, D. (2019). Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule, 3, 956-991.

Lin, J., Peng, Z., Wang, G., Zakhidov, D., Larios, E., Yacaman, M.J. and Tour, J. M. (2014). Enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Advanced Energy Materials, 4, 1301875.

Lin L., Fu, Q., Han, Y., Wang, J., Zhang, X., Zhang, Y., Hu, C., Liu, Z., Sui, Y. and Wang, X. (2019). Fe doped skutterudite-type CoP3 nanoneedles as efficient electrocatalysts for hydrogen and oxygen evolution in alkaline media. Journal of Alloys and Compounds, 808, 151767.

Lin, L., Sherrell, P., Liu, Y., Lei, W., Zhang, S., Zhang, H., Wallace, G.G. and Chen, J. (2020). Engineered 2D transition metal dichalcogenides-a vision of viable hydrogen evolution reaction catalysis. Advanced Energy Materials, 10, 1903870.

Liu, Y., Wu, J., Hackenberg, K.P., Zhang, J., Wang, Y.M., Yang, Y., Keyshar, K., Gu, J., Ogitsu, T., Vajtai, R., et al. (2017). Self-optimizing, highly surface active layered metal dichalcogenide catalysts for hydrogen evolution. Nature Energy, 2, 17127. https://doi.org/10.1038/nenergy.2017.127.

Liu, J.X., Yin, H.J., Liu, P.R., Chen, S., Yin, S.W., Wang, W.L., Zhao, H.J. and Wang, Y. (2019). Theoretical understanding of electrocatalytic hydrogen production performance by low-dimensional metal-organic frameworks on the basis of resonant charge-transfer mechanisms. Journal of Physical Chemical Letters, 10, 6955–6961.

Liu, L., Kumar, S.B., Ouyang, Y. and Guo, J. (2011). Performance limits of monolayer transition metal dichalcogenide transistors. In IEEE Transactions on Electron Devices, 58(9), 3042-3047, https://doi.org/10.1109/TED.2011.2159221.

Liu, Y., Hua, X., Xiao, C., Zhou, T., Huang, P., Guo, Z., Pan, B. and Xie, Y. (2016). Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of American Chemical Society, 138(15), 5087-5092. https://doi.org/10.1021/jacs.6b00858.

Liu, N., Wang, X., Xu, W., Hu, H., Liang, J. and Qiu, J.J.F. (2014). Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization, 119, 163–169.

Lukowski, M.A., Daniel, A.S., Meng, F., Forticaux, A., Li, L. and Jin, S. (2013). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of American Chemical Socety, 135, 10274−10277.

Lv, X.-J, She, G.-W., Zhou, S.-X. and Li, Y.-M. (2013). Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Advances, 3(44), 21231-21236.

Mak, K.F., Lee, C., Hone, J., Shan, J. and Heinz, T.F. (2010). Atomically thin MoS2: a new directgap semiconductor. Physical Review Letters, 105, 136805. https://doi.org/10.1103/PhysRevLett.105.136805.

Manzeli, S., Ovchinnikov D., Pasquier, D., Yazyev, O.V. and Kis, A. (2017). 2D transition metal dichalcogenides. Nature Review Materials, 2, 17033

McCrum, I.T. and Koper, M.T. (2020). The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nature Energy, Nature, 5(11), 891-899.

Mehla, S. (2022). Design and fabrication of gold microelectrode arrays for SERS-based chemical sensing. Melbourne: RMIT University.

Mehta S., Thakur, R., Rani S., Nagaraja, B.M., Mehla, S. and Kainthla, I. (2024) Recent advances in ternary transition metal dichalcogenides for electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 82, 1061–1080.

Najafi, L., Bellani, S., Oropesa-Nuñez, R., Ansaldo, A., Prato, M., Del Rio Castillo, A.E. and Bonaccorso, F. (2018). Doped-MoSe2 nanoflakes/3d metal oxide–hydr(Oxy)oxides hybrid catalysts for pH-universal electrochemical hydrogen evolution reaction. Advanced Energy Material, 8, 1801764.

Naz, R., Liu, Q., Abbas, W., Imtiaz, M., Zada, I., Ahmad, J., et al. (2019). One-pot hydrothermal synthesis of ternary 1T-MoS2/hexa-WO3/graphene composites for high-performance supercapacitors. Chemistry- a European Journal, 25,16054–16062.

Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J.G., Pandelov, S., Stimming, U. (2005). Trends in the exchange current for hydrogen evolution. Jornal of Electrochemical Society,152, J23.

Ogunkunle, S. A., Bouzid, A., Hinsch, J.J., Allen, O.J., White, J.J., Bernard, S., Wu, Z., Zhu, Y. and Wang, Y. (2024). Defect engineering of 1T′ MX2 (M = Mo, W and X = S, Se) transition metal dichalcogenide-based electrocatalyst for alkaline hydrogen evolution reaction. Journal of Physics: Condensed Matter, 36, 145002.

Ouyang, Y., Ling, C., Chen, Q., Wang, Z., Shi, L. and Wang, J. (2016). Activating Inert Basal planes of MoS2 for hydrogen evolution reaction through the formation of different Intrinsic defects. Chemistry of Materials, 28, 4390−4396.

Paez-Ornelas, J. I., Ponce-Pérez, R., Fernández-Escamilla, H. N., Hoat, D. M., Murillo-Bracamontes E. A., Moreno-Armenta M.G., Donald H.G., and Guerrero-Sánchez, J. (2021). The effect of shape and size in the stability of triangular Janus MoSSe quantum dots. Scientific Reports, 11, 21061. https://doi.org/10.1038/s41598-021-00287-6.

Polvani L. M., Previdi, M., England, M., Chiodo, R.G. and Smith K. L. (2020). Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nature Climate Change, 10, 130-133.

Prabhu, P., Jose, V. and Lee, J.-M. (2020). Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter, 2(3), 526–553.

Ramki, S., Sukanya, R., Chen, S.-M., Sakthivel, M., and Wang, J. Y., (2019). Simple hydrothermal synthesis of defective CeMoSe2 dendrites as an effective electrocatalyst for the electrochemical sensing of 4-nitrophenol in water samples. New Journal of. Chemistry, 43, 17200.

Sakthivel, M, Ramaraj, S., Chen, S.-M., Chen, T.-W. and Ho, K. (2019). Transition-metal-doped molybdenum diselenides with defects and abundant active sites for efficient performances of enzymatic biofuel cell and supercapacitor applications. Interfaces, 11, 18483–18493.

Shen, J., Ji, J., Dong, P., Baines, R., Zhang, Z., Ajayan, P.M., et al. (2016). Novel FeNi2S4/TMD-based ternary composites for supercapacitor applications. Journal of Materials Chemistry A, 4(22), 8844–8850.

Shifa, T.A., Wang, F., Liu, K., Xu, K., Wang, Z., Zhan, X., et al. (2016). Engineering the electronic structure of 2D WS2 nanosheets using Co incorporation as CoxW(1-x)S2 for conspicuously enhanced hydrogen generation. Small, 12, 3802–3809.

Shi, Y., Zhou, Y., Yang, D.R., Xu, W.X., Wang, C., Wang, F.B., Xu, J.J., Xia, X.H. and Chen, H.Y. (2017). Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. Journal of American Chemical Society, 139(43), 15479-15485. https://doi.org/10.1021/jacs.7b08881.

Shi, H., Zhang, H., Li, M., Wang, Y. and Wang, D. (2021). Nanoflower-like 1T/2H mixedphase MoSe2 as an efficient electrocatalyst for hydrogen evolution. Journal of Alloys and Compound, 878, 160381.

Shim, G.W., Hong, W., Yang, S.Y. and Choi, S. (2017). Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A, 5,14950–14968.

Sim, Y., Chae, Y. and Kwon, S.-Y. (2022). Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. iScience, 25, 105098.

Sk´ulason, E., Tripkovic, V., Bjo¨rketun, M.E., Gudmundsdóttir, S., Karlberg, G., Rossmeisl, J., Bligaard, T., Jónsson, H. and Nørskov, J.K. (2010). Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C, 114, 18182–18197.

Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., and Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano Letters, 10, 1271–1275. https://doi.org/10.1021/nl903868w.

Sukanya R., Barwa T. N., Luo Y., Dempsey E., and Breslin C.B. (2022). Emerging layered materials and their applications in the corrosion protection of metals and alloys. Sustainability, 14(7), 4079. https://doi.org/10.3390/su14074079

Sukanya, R., da Silva Alves, D.C. and Breslin, C.B. (2022). Recent developments in the applications of 2D transition metal dichalcogenides as electrocatalysts in the generation of hydrogen for renewable energy conversion. Journal of The Electrochemical Society, 169, 064504.

Sun, L., Gao, M., Jing, Z., Cheng, Z., Zheng, D., Xu, H., Zhou, Q. and Lin J. (2022). 1T phase enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chemical Engineering Journal, 429, 132187. https://ui.adsabs.harvard.edu/link_gateway/2022ChEnJ.42932187S/ https://doi.org/10.1016/j.cej.2021.132187.

Sun, X., Dai, J., Guo, Y., Wu, C., Hu, F., Zhao, J., Zeng, X. and Xie, Y. (2014). Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 6, 8359-8367.

Sun, Y., Wang, B., Liu, X., Gao, L. and Shangguan, W.J.C. (2023). Synthesis of ternary cross-linked MoS2/WS2/CdS photocatalysts for photocatalytic H2 production. Catalyst,13,1149. https://doi.org/10.3390/catal13081149.

Tan, C., Chen, J., Wu, X.‑J., and Zhang, H. (2018). Epitaxial growth of hybrid nanostructures. Nature Reviews Materials, 3(2), 17089. doi:10.1038/natrevmats.2017.89

Tang, Q. and Jiang, D.-E. (2016). Mechanism of hydrogen evolution reaction on 1T- MoS2 from first principles. ACS Catalyst, 6, 4953.

Tanwar, S., Arya, A., Gaur, A. and Sharma, A.L. (2021). Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics: Condensed Matter, 33(30). https://doi.org/10.1088/1361-648X/abfb3c.

Tian, X., Zhao, P. and Sheng,W. (2019). Hydrogen evolution and oxidation: mechanistic studies and material advances. Advanced Materials, 31, 1808066.

Tongay, S., Suh, J., Ataca, C., Fan, W., Luce, A., Kang, J.S., Liu, J., Ko C., Raghunathanan R., Zhou J., Ogletree F., J. Li , Grossman J.C. and Wu J. (2013). Defects activated photoluminescence in two-dimensional semiconductors:interplay between bound, charged, and free excitons. Scientific Report, 3, 2657.

Turner, J. A. (2004). Sustainable hydrogen production. Science, 305, 972.

Tsai, C., Li, H., Park, S., Park, J., Han, H. S., Nørskov, J. K., Zheng, X. and Abild-Pedersen, F. (2017). Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 8, 15113.

Vikraman, D., Hussain, S., Patil, S. A., Truong, L., Arbab, A. A., Jeong, S. H., Chun, S.- H., Jung J. and Kim, H.-S. (2021). Engineering MoSe2/WS2 hybrids to replace the scarce platinum electrode for hydrogen evolution reactions and dye-sensitized solar cells. ACS Applied Material Interfaces,13,5061.

Vikraman, D., Hussain, S., Karuppasamy, K., Kathalingam, A., Jo, E.-B., Sanmugam, A., Jung, J. and Kim, H.-S. (2022). Engineering the active sites tuned MoS2 nanoarray structures by transition metal doping for hydrogen evolution and supercapacitor applications. Journal of Alloys and Compound,893,162271.

Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G. and Chhowalla, M. (2013). Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters,13, 6222.

Wang, P., Zhang, X., Zhang, J., Wan, S., Guo, S., Lu, G., Yao, J. and Huang, X. (2017). Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nature Communications, 8, 14580.

Wang, J., Shu, H., Zhao, T., Liang, P., Wang, N., Cao, D. and Chen, X. (2018). Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Physical Chemistry Chemical Physics,20,18571.

Wang, R., Li, X., Gao, T., Yao, T., Liu, S., Wang, X., Han, J., Zhang, P., Cao, X., Zhang, X., Zhang, Y. and Song, B. (2019). Beyond 1T-phase synergistic electronic structure and defects engineering in 2H-MoS2xSe2(1-x) nanosheets for enhanced hydrogen evolution reaction and sodium storage. ChemCatChem, 11, 3200-3211.

Wang, J., Wang, W., Wang, Z., Chen, J. G. and Liu, C.-j. (2016). Porous MS2/MO2 (M = W, Mo) nanorods as efficient hydrogen evolution reaction catalysts. ACS Catalysts, 6, 6585−6590.

Wang, M., Wang, X., Zheng, M. and Zhou, X. (2022). Improved catalytic activity of “Janus” MoSSe based on surface interface regulation. Molecules, 27(18), 6038.

Wang, Z., Zhao, C., Gui, R., Jin, H., Xia, J., Zhang, F., et al. (2016). Synthetic methods and potential applications of transition metal dichalcogenide/graphene nanocomposites. Coordination Chemistry Reviews, 326, 86–110.

Wang, J., Wu, W., Kondo, H., Fan, T. and Zhou, H. (2022). Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology, 33,342002.

Wazir, M.B., Daud, M., Safeer, S., Almarzooqi, F. and Qurashi, A. (2022). Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications. ACS Omega, 7, 16856–16865. https://doi.org/10. 1021/acsomega.2c00330.

Wei, J., Zhou, M., Long, A., Xue, Y., Liao, H., Wei, C. and Xu, Z.J. (2018). Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Letters, 10(4),75. https://doi.org/10.1007/s40820-018-0229-x.

Wilson, J.A., Di Salvo, F.J. and Mahajan, S. (1974). Charge-density waves in metallic, layered, transition-metal dichalcogenides. Physical Review Letters,32, 882–885. https://doi.org/10.1103/ PhysRevLett.32.882.

Wu, H., Zuo, X., Wang, S.P., Yin, J.W., Zhang, Y.N. and Chen, J. (2019). Theoretical and experimental design of Pt-Co(OH)2 electrocatalyst for efficient HER performance in alkaline solution. Progress in Natural Science: Materials International, 29, 356–361.

Wu, L. and Hofmann, J.P. (2021). Comparing the intrinsic HER activity of transition metal dichalcogenides: pitfalls and suggestions. ACS Energy Letters, 6, 2619–2625.

Xiong, Q., Wang, Y., Liu, P.-F., Zheng L.-R., Wang G., Yang H.-G., Wong P.-K., Zhang, H. and Zhao H. (2018). Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Advanced Materials, 30, 1801450.

Xiong Q., Zhang, X., Wang, H., Liu, G., Wang, G., Zhang, H. and Zhao, H. (2018). One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chemical Communication, 54, 3859-3862.

Xie J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B. and Xie, Y. (2013). Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of American Chemical Society,135(47), 17881–17888.

Xu, S., Lei, Z. and Wu, P. (2015). Facile preparation of 3D MoS2/MoSe2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. Journal of Material Chemistry A,3, 16337.

Yang, Y., Fei, H., Ruan, G., Li, Y., Tour, J.M. (2015). Vertically aligned WS2 nanosheets for water splitting. Advanced Functional Materials, 25, 6199-6204.

Yang, L., Fu, Q., Wang, W., Huang, J., Huang, J., Zhang, J. and Xiang,B. (2015). Large-area synthesis of monolayer MoS2(1-x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale,7, 10490.

Ye, G., Gong, Y., Lin, J., Li, B., He, Y., Pantelides, S. T., Zhou, W., Vajtai, R. and Ajayan, P. M. (2016). Defects engineered monolayer MoS2for improved hydrogen evolution reaction. Nano Letters, 16, 1097.

Yin, M., Wang, K., Zhang, L., Gao, C., Ren, J. and Yu, L. (2023). Ternary alloyed MoS2–x Se x nanocomposites with a carrier mobility-dominated gas sensing mode: a superior room temperature gas sensing material for NO2 sensors. Journal of Materials Chemistry C, 11, 9715–9726.

Yin, Y., Han, J., Zhang, Y., Zhang, X., Xu, P., Yuan, Q., Samad, L., Wang, X., Wang, Y., Zhang, Z., Zhang, P., Cao, X., Song, B. and Jin, S. (2016). Contributions of phase, sulfur vacancies and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. Journal of American Chemical Society,138 (25), 7965-7972. https://doi.org/10.1021/jacs.6b03714.

Yin, Y., Zhang, Y., Gao, T., Yao, T., Zhang, X., Han, J., Wang, X., Zhang, Z., Xu, P., Zhang, P., Cao X., Song, B. and Jin, S. (2017). Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction. Advanced Materials, 29(28), 1700311. https://doi.org/10.1002/adma.201700311.

Yu, T. and Breslin, C.B. (2020). Review-two-dimensional titanium carbide MXenes and their emerging applications as electrochemical sensors. Jounal of Electrochemical Society, 167, 037514.

Yu, P., Wang, F., Shifa, T. A., Zhan, X., Lou, X., Xia, F. and He, J. (2019). Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 58, 244-276.

Yu, J., Peng, G., Peng, L., Chen, Q., Su, C., Shang, L. and Zhang, T. (2024). Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis, Green Energy & Environment, https://doi.org/10.1016/j.gee.2024.08.009.

Zeng, J. Liu, Y., Huang, Z., Qiao, H. and Qi, X. (2024). Transition metal dichalcogenides in electrocatalytic water splitting. Catalysts, 14, 689. https://doi.org/10.3390/catal14100689.

Zhang, L., Chang, Q., Chen, H. and Shao, M. (2016). Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy, 29,198–219.

Zhang, K., Kim H.-J., Lee, J.-T., Chang, G.-W., Shi, X., Kim, W., Ma, M., Kong, K.-j., Choi, J.-M., Song, M.-S. and Park, J.H. (2014). Unconventional pore and defect generation in molybdenum disulfide: Application in high-rate lithium-ion batteries and the hydrogen evolution reaction. ChemSusChem, 7, 2489-2495.

Zhang, X., Meng, F., Mao, S., Ding, Q., Shearer, M. J., Faber, M. S., Chen, L., Hamers, R. J. and Jin, S. (2015). Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy and Environmental Science, 8, 862-868.

Zhang, K. et al., (2020). Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. Journal of American Chemical Society, 142, 17499.

Zhang, Y, Liu, K, Wang, F, Shifa, T.A, Wen, Y, Wang, F., et al. (2017). Dendritic growth of monolayer ternary WS2(1− x)Se2x flakes for enhanced hydrogen evolution reaction, 9, 5641–5647.

Zhao, C., Liu, B., Piao S, Wang X, Lobell DB, Huang Y, Huang M et al., (2017). Temperature increase reduces global yields of major crops in four independent estimates. Prococeeding of National Academy of Science, USA, 114(35), 9326-9331. https://doi.org/10.1073/pnas.1701762114.

Zhou, P., Li, N., Chao, Y., Zhang, W., Lv, F., Wang K., Yang, W., Gao, P. and Guo, S. (2019). Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew Chem Int Ed Engl., 58(40), 14184-14188. https://doi.org/10.1002/anie.201908351.

Zhu, J., Hu, L., Zhao, P., Lee, L. Y. S. and Wong, K.-Y. (2020). Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Review, 120, 851.

Zhu, Z.Y., Cheng ,Y.C. and Schwingenschlögl, U. (2011). Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B: Condensed Matter,84, 153402.

Zibouche N., Kuc A., Musfeldt, J. and Heine, T. (2014). Transition-metal dichalcogenides for spintronic applications. Annalen der physik, 526 , 395-401.

Downloads

Published

2025-07-03

How to Cite

Shamsuddeen, S. A., Abdulsalam, M., & Tanimu, A. (2025). Application of Transition Metal Dichalcogenides in Electrocatalytic Splitting of Water for Hydrogen Production: A Review. Nigerian Journal of Physics, 34(2), 44-66. https://doi.org/10.62292/10.62292/njp.v34i2.2025.366

Similar Articles

1-10 of 33

You may also start an advanced similarity search for this article.