Many Body Theory of the Coupling of THz Radiation with Intersubband Excitations in GaAs/AlGaAs Quantum Well
DOI:
https://doi.org/10.62292/njp.v34i1.2025.370Keywords:
Intersubbands transition, interband transition, Optical absorption, THz polaritonsAbstract
The coupling of THz and Mid Infrared Radiation (TERA-MIR) with an optical excitation in semiconductor microcavities is the subject of increasing research interest. This can be attributed to their important in device’s implementations and applications such as THz imaging, spectroscopy and detection of biological, explosive and hazardous materials. In this paper, we investigated the coupling of TE- THz mode with an intervalence band transition in GaAs/Al0.3Ga0.7As multiple quantum wells embedded in microcavities. Using mathematical modeling and numerical approach, applied to the valence subbands, the optical absorption of the model multiple quantum wells embedded in a microcavity resonator was determined. Simulation results for different carrier densities and dephasing are computed. The result shows clearly the influences dephasing and scattering mechanism as well as Coulomb’s interactions on the energy dispersion of the terahertz Polari tonics.
Downloads
References
Anappara, A. A., Tredicucci, A., & Beltram, F. (2006). Applied Physics Letters, 89(17), 171109. https://doi.org/10.1063/1.2362970
Anappara, A. A., Tredicucci, A., & Beltram, F. (2007). Cavity polaritons from excited-subband transitions. Applied Physics Letters, 91(23), 231118. https://doi.org/10.1063/1.2821852
Anappara, A. A., Tredicucci, A., Biasiol, G., & Sorba, L. (2005). Applied Physics Letters, 87(5), 051105. https://doi.org/10.1063/1.2009067
Chow, W. W., Pereira, M. F. Jr., & Koch, S. W. (1992). Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium. Applied Physics Letters, 61(6), 758–760. https://doi.org/10.1063/1.107586
De Liberato, S., & Ciuti, C. (2009). Stimulated scattering and lasing of intersubband cavity polaritons. Physical Review Letters, 102(13), 136403. https://doi.org/10.1103/PhysRevLett.102.136403
Dini, D., Köhler, R., Tredicucci, A., Biasiol, G., Sorba, L., & Beltram, F. (2003). Microcavity polariton splitting of intersubband transitions. Physical Review Letters, 90(11), 116401. https://doi.org/10.1103/PhysRevLett.90.116401
Dresselhaus, M. S. (2022). Solid state physics part II: Optical properties of solids. Massachusetts Institute of Technology. http://web.mit.edu/6.732/www/6.732-pt2.pdf
Faragai, I. A., & Pereira, M. F. (2013). Interaction of valence band excitations and terahertz TE-polarized cavity modes. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-013-9780-3
Ferguson, B., & Zhang, X.-C. (2002). Materials for terahertz science and technology. Nature Materials, 1(1), 26–33. https://doi.org/10.1038/nmat708
Fox, M., & Ispasoiu, R. (n.d.). Quantum wells, superlattices, and band-gap engineering. In Springer Handbook of Electronic and Photonic Materials. https://www.springer.com/978-0-387-26059-4
Haug, H., & Koch, S. W. (2004). Quantum theory of the optical and electronic properties of semiconductors (4th ed.). World Scientific.
Pereira, M. F. Jr., & Henneberger, K. (1997). Gain mechanisms and lasing in II-VI compounds. Physica Status Solidi (b), 202(1), 751–755. https://doi.org/10.1002/1521-3951(199707)202:1<751::AID-PSSB751>3.0.CO;2-G
Pereira, M. F. Jr., & Henneberger, K. (1998). Microscopic theory for the optical properties of Coulomb-correlated semiconductors. Physica Status Solidi (b), 206(2), 477–480. https://doi.org/10.1002/(SICI)1521-3951(199811)206:2<477::AID-PSSB477>3.0.CO;2-A
Pereira, M. F. Jr., & Wenzel, H. (2004). Interplay of Coulomb and nonparabolicity effects in the intersubband absorption of electrons and holes in quantum wells. Physical Review B, 70(20), 205331. https://doi.org/10.1103/PhysRevB.70.205331
Pereira, M. F., & Faragai, I. A. (2014). Coupling of THz with intervalence band transitions in microcavities. Optics Express
Schmielau, T., & Pereira, M. F. Jr. (2009). Nonequilibrium many-body theory for quantum transport in terahertz quantum cascade lasers. Applied Physics Letters, 95(23), 231111. https://doi.org/10.1063/1.3275742
Wikipedia contributors. (2012, April 14). Quantum cascade laser. Wikipedia. https://en.wikipedia.org/wiki/Quantum_cascade_laser