Fabrication and Characterization of Co and Li Doped TiO2 Photoanodes for High-Efficiency Dye-Sensitized Solar Cells
Main Article Content
Abstract
The urgent need for a sustainable energy future has driven global efforts to transition from fossil fuels to renewable energy sources. However, challenges such as escalating energy demands, environmental degradation, and the accelerating climate crisis hinder this transition. Dye-sensitized solar cells (DSSCs) emerge as a promising alternative, offering potential advantages like affordability, flexibility, and enhanced efficiency. Titanium (IV) Oxide (TiO2), a widely studied semiconductor material, has been extensively explored for DSSC applications. However, its inherent limitations, including a wide bandgap, significant charge recombination losses, and low electrical conductivity, impede the development of efficient and cost-effective DSSCs. This study aims to address these challenges and contribute to the advancement of DSSC technology as a viable and sustainable energy solution. DSSCs were fabricated using TiO2 photoanodes doped with cobalt (Co) and lithium (Li) via a one-pot sol-gel synthesis approach. Ruthenium-based dye N719 was utilized as the sensitizer. Characterization techniques, including XRD, FTIR, DRS, FESEM, and EDX, were employed to analyze the structural, optical, morphological, and elemental properties of the synthesized materials. Doping with Co and Li effectively reduced the TiO2 bandgap from 3.18 eV to 3.12 eV and 2.88 eV, respectively, leading to enhanced short-circuit current density (Jsc) values of 10.97 mA/cm² and 12.37 mA/cm², respectively. Among the fabricated DSSCs, the Li-doped TiO2 photoanode demonstrated the highest power conversion efficiency of 5.3%, followed by Co-doped TiO2 (4.2%) and undoped TiO2 (3.3%). These findings highlight the potential of Li and Co-doped TiO2 as promising materials for the development of high-performance DSSCs.
Downloads
Article Details
References
Aboulouard, A., Gultekin, B., Can, M., Erol, M., Jouaiti, A., Elhadadi, B., Zafer, C., & Demic, S. (2020). Dye sensitized solar cells based on titanium dioxide nanoparticles synthesized by flame spray pyrolysis and hydrothermal sol-gel methods: A comparative study on photovoltaic performances. Journal of Materials Research and Technology, 9(2), 1569–1577. https://doi.org/10.1016/j.jmrt.2019.11.083
Adedokun, O., Adedokun, O. M., Bello, I. T., Ajani, A. S., Jubu, P. R., Awodele, M. K., Dhlamini, M. S., Kaliamurthy, A. K., & Bhat, M. A. (2024). Sol-gel synthesized lithium-cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation. Zeitschrift Fur Physikalische Chemie. https://doi.org/10.1515/zpch-2024-0835
Adedokun, O., Bello, I. T., Sanusi, Y. K., & Awodugba, A. O. (2020). Effect of precipitating agents on the performance of ZnO nanoparticles based photo-anodes in dye-sensitized solar cells. Surfaces and Interfaces, 21(June), 100656. https://doi.org/10.1016/j.surfin.2020.100656
Adedokun, O., Sivaprakash, P., Ajani, A. S., Bello, I. T., & Arumugam, S. (2023). Structural, optical and magnetic studies of sol-gel synthesized Mg-doped pure anatase TiO2 nanoparticles for spintronic and optoelectronics applications. Physica B: Condensed Matter, 667. https://doi.org/10.1016/j.physb.2023.415199
Ahmad, I., Jafer, R., Abbas, S. M., Ahmad, N., Ata-ur-Rehman, Iqbal, J., Bashir, S., Melaibari, A. A., & Khan, M. H. (2022). Improving energy harvesting efficiency of dye sensitized solar cell by using cobalt-rGO co-doped TiO2 photoanode. Journal of Alloys and Compounds, 891, 162040. https://doi.org/10.1016/j.jallcom.2021.162040
Al Jitan, S., Palmisano, G., & Garlisi, C. (2020). Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts, 10(2). https://doi.org/10.3390/catal10020227
Alamu, G. A., Adedokun, O., Bello, I. T., & Sanusi, Y. K. (2021). Plasmonic enhancement of visible light absorption in Ag-TiO2 based dye-sensitized solar cells. Chemical Physics Impact, 3, 100037. https://doi.org/10.1016/j.chphi.2021.100037
Andualem, A., & Demiss, S. (2018). Review on Dye-Sensitized Solar Cells (DSSCs). Journal of Heterocyclics, 1(1), 29–34. https://doi.org/10.33805/2639-6734.103
Bahri, S. S., Harun, Z., Wan Salleh, W. N., Hussin, R., Hairom, N. H. H., Kamaruddin, N. H., Basri, H., Rasli, N. I., Rosman, A., Jamaluddin, M. R., & Ainuddin, A. R. (2023). Green Synthesis and Characterization of Fe Doped Tio2 Nanoparticles Using Lawsonia Inermis Leaf Aqueous Extracts As Reductant for Photocatalytic Activity. ASEAN Engineering Journal, 13(3), 141–152. https://doi.org/10.11113/aej.V13.19690
Chauke, N. M., Mohlala, R. L., Ngqoloda, S., & Raphulu, M. C. (2024). Harnessing visible light: enhancing TiO2 photocatalysis with photosensitizers for sustainable and efficient environmental solutions. Frontiers in Chemical Engineering, 6(February), 1–25. https://doi.org/10.3389/fceng.2024.1356021
El-Kholy, R. A., Isawi, H., Zaghlool, E., Soliman, E. A., Khalil, M. M. H., Said, M. M., & El-Aassar, A. elhameed M. (2023). Preparation and characterization of rare earth element nanoparticles for enhanced photocatalytic degradation. Environmental Science and Pollution Research, 30(26), 69514–69532. https://doi.org/10.1007/s11356-023-27090-2
Galstyan, V., Macak, J. M., & Djenizian, T. (2022). Anodic TiO2 nanotubes: A promising material for energy conversion and storage. Applied Materials Today, 29(July). https://doi.org/10.1016/j.apmt.2022.101613
Hamdan, S. A., Ibrahim, I. M., & Ali, I. M. (2020). Comparison of anatase and rutile TiO2 nanostructure for gas sensing application. Digest Journal of Nanomaterials and Biostructures, 15(4), 1001–1008. https://doi.org/10.15251/djnb.2020.154.1001
Hao, D., Qi, L., Tairab, A. M., Ahmed, A., Azam, A., Luo, D., Pan, Y., Zhang, Z., & Yan, J. (2022). Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renewable Energy, 188, 678–697. https://doi.org/10.1016/j.renene.2022.02.066
He, Z., Li, J., Wang, D., Wang, J., & Zhang, T. (2017). Enhanced photovoltaic performance of TiO2 dye-sensitized solar cell based on one-dimensional composite photoanode. International Journal of Electrochemical Science, 12(10), 8918–8928. https://doi.org/10.20964/2017.10.02
Kokkonen, M., Talebi, P., Zhou, J., Asgari, S., Soomro, S. A., Elsehrawy, F., Halme, J., Ahmad, S., Hagfeldt, A., & Hashmi, S. G. (2021). Advanced research trends in dye-sensitized solar cells. Journal of Materials Chemistry A, 9(17), 10527–10545. https://doi.org/10.1039/d1ta00690h
Lana, G. M., Bello, I. T., Adedokun, O. M., Adenigba, V. O., Jubu, P. R., Adedokun, O., Sanusi, Y. K., Dhlamini, M. S., & Awodugba, A. O. (2024). One-Dimensional TiO2 Nanocomposite-based Photoanode for Dye-Sensitized solar Cells: A review. In Solar Energy (Vol. 279). Elsevier Ltd. https://doi.org/10.1016/j.solener.2024.112850
Lima, F. M., Leitão, J. S. O., Nunes, V. F., Andrade, M. R., Santana Mota, J. P., de Moura, T. A., Leite Almeida, A. F., de Amorim, A. F. V., Girão, D. de C., Aguiar Freire, F. N., & Rocha, J. S. (2024). Tin Dioxide-Based Photoanodes Integrated Into the Dye Sensitized Solar Cells Structure. Materials Research, 27, 1–10. https://doi.org/10.1590/1980-5373-MR-2024-0042
Mohamed, D. (2019). Preparation and characterization of Titanium dioxide and Zinc oxide thin films via Sol-Gel (spin coating) technique for optoelectronic applications Speciality: Physics of thin films.
Mushtaq, K., Saeed, M., Gul, W., Munir, M., Firdous, A., Yousaf, T., Khan, K. B., Sarwar, H. M. R., Riaz, M. A., & Zahid, S. (2020). Synthesis and characterization of TiO2 via sol-gel method for efficient photocatalytic degradation of antibiotic ofloxacin. Inorganic and Nano-Metal Chemistry, 50(7), 580–586. https://doi.org/10.1080/24701556.2020.1722695
Nunes, V. F., Lima, F. M., Teixeira, E. S., Maia, P. H. F., Almeida, A. F. L., & Freire, F. N. A. (2023). Synthesis of TiO2/ZnO photoanodes on FTO conductive glass for photovoltaic applications. Ceramica, 69(389), 79–86. https://doi.org/10.1590/0366-69132023693893383
Omar, A., Ali, M. S., & Abd Rahim, N. (2020). Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 207(September), 1088–1121. https://doi.org/10.1016/j.solener.2020.07.028
Qiu, Y., Zhang, P., Li, Q., Zhang, Y., & Li, W. (2021). A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Solar Energy, 230, 1165–1174. https://doi.org/10.1016/j.solener.2021.11.034
Sadek, O., Touhtouh, S., Rkhis, M., Anoua, R., El Jouad, M., Belhora, F., & Hajjaji, A. (2022). Synthesis by sol-gel method and characterization of nano-TiO2 powders. Materials Today: Proceedings, 66, 456–458. https://doi.org/10.1016/j.matpr.2022.06.385
Sharma, A., Negi, P., Konwar, R. J., Kumar, H., Verma, Y., Shailja, Sati, P. C., Rajyaguru, B., Dadhich, H., Shah, N. A., & Solanki, P. S. (2022). Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions. Journal of Materials Science and Technology, 111(December), 287–297. https://doi.org/10.1016/j.jmst.2021.09.014
Teixeira, E. S., Nunes, V. F., Pinho, D. C., Maia, P. H. F., Lima, F. M., de Sá Moreira, M., Almeida, A. F. L., & Freire, F. N. A. (2022). Effect of the Performance of Lignin Into the Matrix of the TiO2 with Application on DSSCs. Floresta e Ambiente, 29(3). https://doi.org/10.1590/2179-8087-FLORAM-2022-0013
Yilleng, M. T., Sunday, M., & Stephen, D. (2020). Synthesis, Characterization and Photoactivity Evaluation of Nitrogen Doped Titanium Dioxide on Methylene Blue Dye Degradation. Fudma Journal of Sciences, 4(3), 148–153. https://doi.org/10.33003/fjs-2020-0403-356