The Influence of Doping Concentration on Photocatalytic Activity of Bismuth-Doped Titanium (IV) Oxide

Main Article Content

Kayode J. Olaniyi
Aanuoluwapo O. Ogundeji
Tolulope N. Adewale
Oludele Adegboyega
Mojoyinola Kofoworola Awodele
Oluwaseun Adedokun

Abstract

Titanium (IV) Oxides (TiO2) have been widely studied for photocatalytic applications due to their excellent electrical and optical properties. It has a band gap of 3.0 – 3.2eV and can be excited by ultraviolet (UV) light. Although TiO2 has been researched to be an efficient photocatalyst material by many researchers, its wide band gap limits its absorption of light into the UV portion of the electromagnetic spectrum. In this work, we reported a straightforward Sol-gel approach to synthesize both undoped and Bismuth (Bi) doped TiO2 in order to investigate the photocatalytic activity of Bi-TiO2. Various characterization methods, including XRD, FTIR, and DRS, were employed to investigate how the doping concentration of Bi affected the optical and structural characteristics of TiO2. From the results, the XRD spectrum indicated the tetragonal structure corresponding to the anatase phase of TiO2. DRS reveals that there is a slight decrease in the energy band gap for the sample from 3.23 eV – 3.15 eV as the concentration of Bi increases. The degradation of methylene blue and methylene orange through photocatalysis was used to examine the samples' photocatalytic activity. The outcomes of the photocatalytic activity showed that the undoped TiO2 has a better photocatalytic degradation percentage of 89.27% and 58.19% for Methylene blue and Methylene orange, respectively when compared with the Bi-TiO2 samples.

Downloads

Download data is not yet available.

Article Details

How to Cite
Olaniyi, K. J., Ogundeji, A. O., Adewale, T. N., Adegboyega, O., Awodele, M. K., & Adedokun, O. (2023). The Influence of Doping Concentration on Photocatalytic Activity of Bismuth-Doped Titanium (IV) Oxide. Nigerian Journal of Physics, 32(3), 100–109. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/124
Section
Articles

References

Bhatti, M. A., Shah, A. A., Almaani, K. F., Tahira, A., Chandio, A. D., Willander, M., Nur, O., Mugheri, A. Q., Bhatti, A. L., Waryani, B., Nafady, A., & Ibupoto, Z. H. (2021). TiO2 / ZnO Nanocomposite Material for Efficient Degradation of Methylene Blue. 21(4), 2511– 2519. https://doi.org/10.1166/jnn.2021.19107

Boini, S., Reddy, N., Ruchira, N., & Aneesha, S. (2018). Structural and Morphological Studies of TiO2 Nanorods Synthesized by Sonochemical Route Structural and Morphological Studies of TiO2 Nanorods synthesized by sonochemical route. September 2019. https://doi.org/10.30967/ijcrset.1.1.2018.49-51

Cheng, H. H., Chen, S. S., Yang, S. Y., Liu, H. M., & Lin, K. S. (2018). Sol-Gel hydrothermal synthesis and visible light photocatalytic degradation performance of Fe/N codoped TiO2 catalysts. Materials, 11(6). https://doi.org/10.3390/ma11060939

Gorgani, M., & Koozegar, B. (2020). Structural , photocatalytic and surface analysis of Nb /

Ag codoped TiO2 mesoporous nanoparticles. Journal of Sol-Gel Science and Technology, 728–741. https://doi.org/10.1007/s10971-020-05403-y

Haider, A. J., Jameel, Z. N., & Al-Hussaini, I. H. M. (2019). Review on: Titanium dioxide applications. Energy Procedia, 157, 17–29. https://doi.org/10.1016/j.egypro.2018.11.159

Him, C., Tsang, A., Li, K., Zeng, Y., Zhao, W., Zhang, T., Zhan, Y., & Xie, R. (2019). Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation : Overview and forecast. Environment International, 125(December 2018), 200–228. https://doi.org/10.1016/j.envint.2019.01.015

Kareem, M. A., Bello, I. T., Shittu, H. A., Sivaprakash, P., Adedokun, O., & Arumugam, S. (2022). Synthesis , characterization , and photocatalytic application of silver doped zinc oxide nanoparticles. Cleaner Materials, 3(January), 100041. https://doi.org/10.1016/j.clema.2022.100041

Li, R., Li, T., & Zhou, Q. (2020). Impact of Titanium Dioxide ( TiO 2 ) Modification on Its Application to Pollution Treatment — A Review.

Nazlı, D. (2020). Preparation of Doped TiO 2 photocatalysts and their decolorization. 8(3), 655–663. https://doi.org/10.21923/jesd.672207

Pant, B., Park, M., & Park, S. J. (2019). Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings, 9(10). https://doi.org/10.3390/coatings9100613

Yilleng, M.T., Avong, S.C., Stephen, D., Madaki, L.A., Akande, A.J. & Yakusak, N.S. (2019) Photocatalytic Degradation of Chlorazole Black E Dye using Silver Doped Titanium Dioxide. Nigerian Research Journal of Chemic al Sciences, 6, 145–154.

Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97(February), 111– 128. https://doi.org/10.1016/j.jiec.2021.02.017

Razani, A., Abdullah, A. H., & Fitrianto, A. (2017). Sol-Gel Synthesis of Fe2 O3 -Doped TiO 2 for Optimized Photocatalytic Degradation of 2 , 4- Dichlorophenoxyacetic Acid. 1–10.

Saravanan, S., & Soga, T. (2021). Study of pure and Ag-doped TiO2 nanoparticles for photocatalytic degradation of methylene blue Study of pure and Ag-doped TiO 2 nanoparticles for photocatalytic degradation of methylene blue. https://doi.org/10.1088/1757-899X/1033/1/012050

Shittu, H. A., Adedokun, O., Kareem, M. A., Bello, I. T., & Arumugam, S. (2023). Effect of Low-Doping Concentration on Silver-Doped SnO2 and its Photocatalytic Applications. 13(2), 1–15.

Shivaraju, H. P., Anil, G. M. K. M., & Pallavi, K. S. (2017). Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy. Applied Water Science. https://doi.org/10.1007/s13201-017-0546-0

Shukla, B. K., Rawat, S., Gautam, M. K., Bhandari, H., Garg, S., & Singh, J. (2022). Photocatalytic Degradation of Orange G Dye by Using Bismuth Molybdate:

Photocatalysis Optimization and Modeling via Definitive Screening Designs. Molecules, 27(7). https://doi.org/10.3390/molecules27072309

Solís-Casados, D. A., Escobar-Alarcón, L., Alvarado-Pérez, V., & Haro-Poniatowski, E. (2018). Photocatalytic activity under simulated sunlight of Bi-modified TiO2 thin films obtained by sol gel. International Journal of Photoenergy, 2018. https://doi.org/10.1155/2018/8715987

Toxicol, J. E. A., Avasarala, B. K., Tirukkovalluri, S. R., & Bojja, S. (2016). Environmental & Analytical Toxicology Magnesium Doped Titania for Photocatalytic Degradation of Dyes in Visible Light. 6(2). https://doi.org/10.4172/2161-0525.1000358

Xie, W., Li, R., & Xu, Q. (2018). Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Scientific Reports, 1–10. https://doi.org/10.1038/s41598-01827135-4