Theoretical Equation of State for Neutron Stars, its Maximal Mass in the Framework of General Relativity before Collapsing into a Black Hole
Main Article Content
Abstract
Despite significant advancements in multi-messenger astronomy and gravitational wave detection, the accurate determination of EOS for NS remains a critical challenge in astrophysics. Current theoretical models often fail to comprehensively reconcile the fundamental properties of NS such as the maximum mass, with observational evidence. The gap limits the full understanding of the maximum stable mass and density of NS, as well as it behavior under extreme relativistic conditions. Computational tools like Einstein’s toolkit and recent multi-massagers observations by LIGO and Virgo have provided useful data, there is a lack of unified, precise EOS models’ that incorporate both theoretical and observational constraints. Addressing this problem is essential for advancing our understanding of NS physics and for guiding future observations. This research therefore, aims to address these gaps by constructing a robust theoretical EOS models for NS using piecewise polytrope approach based on general relativity, supported by computational simulations and validate same against existing observational data. An EOS constructed from theoretical models and numerical simulations has revealed that a NS can attain a maximum mass of before collapsing into a BH at a radius of up to 12 km, based on the mass-radius relationship derived from the model.
Downloads
Article Details
References
Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R. X., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Zweizig, J. (2021). Observation of Gravitational Waves from Two Neutron StarBlack Hole Coalescences. The Astrophysical Journal, 915(1), L5. https://doi.org/10.3847/2041-8213/ac082e
Agathos, M., Meidam, J., Del Pozzo, W., Li, T. G. F., Tompitak, M., Veitch, J., Vitale, S., & Van Den Broeck, C. (2015). Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Physical Review, 92(2). https://doi.org/10.1103/physrevd.92.023012
Baym, G., Pethick, C., & Sutherland, P. (1971). The Ground State of Matter at High densities: Equation of state and stellar models. The Astrophysical Journal, 170, 299. https://doi.org/10.1086/151216
Camenzind, M. (2007). Compact objects in astrophysics: white dwarfs, neutron stars and black holes. https://cds.cern.ch/record/1339093/files/978-3-540-49912-1_BookTOC.pdf
Einstein, A. (1915). The field equations of gravitation. INSPIRE. https://inspirehep.net/literature/42610
Friedman, J. L., Ipser, J. R., & Parker, L. (1984). Models of rapidly rotating neutron stars. Nature, 312(5991), 255257. https://doi.org/10.1038/312255a0
Fujimoto, Y., Fukushima, K., & Murase, K. (2021). Extensive studies of the neutron star equation of state from the deep learning inference with the observational data augmentation. Journal of High Energy Physics, 2021(3). https://doi.org/10.1007/jhep03(2021)273
Haensel, P., Potekhin, A. Y., & Yakovlev, D. G. (2006). Neutron Stars 1: Equation of state and Structure. https://core.ac.uk/display/44282260
LIGO Scientific Collaboration (2021). Using gravitational waves observations to learn about ultra-dense matter. http://www.ligo.org Retrieved on 11:02:2022, 3:58pm.
Lffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B. C., Ott, C. D., Schnetter, E., Allen, G., Campanelli, M., & Laguna, P. (2012). The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. Classical and Quantum Gravity, 29(11), 115001. https://doi.org/10.1088/0264-9381/29/11/115001
Oppenheimer, J. R., & Volkoff, G. M. (1939). On massive neutron cores. Physical Review, 55(4), 374381. https://doi.org/10.1103/physrev.55.374
Radice, D., Perego, A., Zappa, F., & Bernuzzi, S. (2018). GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations. The Astrophysical Journal, 852(2), L29. https://doi.org/10.3847/2041-8213/aaa402
Rocha, L. S., Horvath, J. E., De S, L. M., Chinen, G. Y., Baro, L. G., & De Avellar, M. G. B. (2023). Mass distribution and maximum mass of neutron stars: Effects of orbital inclination angle. Universe, 10(1), 3. https://doi.org/10.3390/universe10010003
Shapiro S. L. & Teukolsky, S. A. (1983). Black Holes, White Dwarfs, and Neutron Stars:The Physics of Compact Objects. WILEY-VCH Verlag GmbH and Co. KGaA,. (n.d.). ISBN 0-471-87317-9.
Vivanco, F. H., Smith, R. J. E., Thrane, E., Lasky, P. D., Talbot, C., & Raymond, V. (2019). Measuring the neutron star equation of state with gravitational waves: The first forty binary neutron star merger observations. Physical Review, 100(10). https://doi.org/10.1103/physrevd.100.103009