Enhancing mpMRI-Based Prostate Cancer Detection by Ensemble Quantum Machine Learning Models

Authors

  • O. O. Solanke Olabisi Onabanjo University, Ago-Iwoye
  • K. K. A. Abdullah Olabisi Onabanjo University
  • S. O. Hassan Olabisi Onabanjo University
  • M. A. Usman Olabisi Onabanjo University

DOI:

https://doi.org/10.62292/10.62292/njp.v34i2.2025.404

Keywords:

Prostate Cancer Detection, Quantum Machine Learning, Ensemble Learning, Variational Quantum Classifier, Quantum Neural Network, PROSTATEx Dataset, Radiomics, Angle Encoding

Abstract

Prostate cancer is among the most prevalent malignancies in men, and early, accurate diagnosis is critical for effective treatment. Traditional machine learning techniques have demonstrated success in analyzing multiparametric magnetic resonance imaging (MRI) and clinical biomarkers; however, their scalability and capacity to model complex feature interactions remain limited. This study proposes an Ensemble Quantum Machine Learning (QML) framework to enhance prostate cancer detection using the PROSTATEx Challenge dataset. Radiomic features were extracted from MRI modalities and clinical attributes, then standardized and reduced using principal component analysis (PCA) to match current quantum hardware constraints. Three quantum classifiers—Quantum Support Vector Machine (QSVM), Variational Quantum Classifier (VQC), and Quantum Neural Network (QNN) - were independently trained and integrated using both soft voting and stacked ensemble strategies. Results from stratified 5-fold cross-validation show that the stacked ensemble outperformed individual models and baseline classifiers, achieving an average accuracy of 88.4%, recall of 89.1%, precision of 87.9%, F1-score of 88.5%, and area under the curve - receiver operating characteristic (AUC-ROC) of 0.94 (stack ensemble). These findings highlight the potential of hybrid quantum-classical ensemble learning to improve diagnostic robustness, particularly in reducing false negatives. Furthermore, validation on real quantum hardware demonstrated consistent performance, underscoring the feasibility of QML in near-term medical applications. This work contributes to the growing intersection of quantum computing and clinical AI, offering a scalable and interpretable approach to precision oncology.

Downloads

Download data is not yet available.

References

Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5, 4006. https://doi.org/10.1038/ncomms5006

Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., & Perdomo-Ortiz, A. (2019). A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Information, 5(1), 45. https://doi.org/10.1038/s41534-019-0157-8

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202. https://doi.org/10.1038/nature23474

Chen, L., Wu, Y., Zhang, H., & Zhang, Y. (2023). Hybrid quantum-classical ensemble learning for prostate cancer diagnosis using MRI radiomic features. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/TBME.2023.3245152

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems (pp. 1-15). Springer. https://doi.org/10.1007/3-540-45014-9_1

Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212. https://doi.org/10.1038/s41586-019-0980-2

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/s41571-018-0016-5

Johansson, F. (2022). Ensemble quantum classifiers for biomedical applications. Quantum Science and Technology, 7(1).

Li, G., Xie, R., Ding, W., & Chen, J. (2022). Quantum machine learning for cancer diagnosis: A review of recent advancements. Frontiers in Physics, 10, 843248. https://doi.org/10.3389/fphy.2022.843248

Litjens, G., Sánchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., & van der Laak, J. (2014). Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6, 26286. https://doi.org/10.1038/srep26286

Mottet, N., van den Bergh, R. C. N., Briers, E., Van den Broeck, T., Cumberbatch, M. G., De Santis, M., ... & Cornford, P. (2020). EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. European Association of Urology. Retrieved from https://uroweb.org/guidelines/prostate-cancer

Rawla, P. (2019). Epidemiology of prostate cancer. World Journal of Oncology, 10(2), 63–89. https://doi.org/10.14740/wjon1191

Schuld, M., & Killoran, N. (2019). Quantum machine learning in feature Hilbert spaces. Physical Review Letters, 122(4), 040504. https://doi.org/10.1103/PhysRevLett.122.040504

Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers. Springer.

Schuld, M., Bocharov, A., Svore, K. M., & Wiebe, N. (2021). Circuit-centric quantum classifiers. Physical Review A, 101(3), 032308. https://doi.org/10.1103/PhysRevA.101.032308

Wang, J. (2020). Transfer learning with CNNs for prostate cancer detection in MRI. IEEE Transactions on Medical Imaging, 39(6).fxcfvsdsfsfsd

Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. CRC Press.

Downloads

Published

2025-07-03

How to Cite

Solanke, O. O., Abdullah, K. K. A., Hassan, S. O., & Usman, M. A. (2025). Enhancing mpMRI-Based Prostate Cancer Detection by Ensemble Quantum Machine Learning Models. Nigerian Journal of Physics, 34(2), 90-98. https://doi.org/10.62292/10.62292/njp.v34i2.2025.404

Similar Articles

31-40 of 58

You may also start an advanced similarity search for this article.