The Study of Lead-Free CH3NH3GeX3 (X=F, Cl, Br, I and At) for Optoelectronic Applications Using First-Principle

Main Article Content

Hassan Abdulsalam
Tahir Abdullahi

Abstract

Organometallic perovskites, with their exceptional electric, magnetic, piezoelectric, and optical properties, are prominent in materials science research. The environmental and health concerns associated with lead-based perovskites have spurred the search for lead-free alternatives, such as methylammonium germanium halides. This study investigates the optical and electronic properties of organometallic perovskite materials, focusing on methylammonium germanium halides (CH3NH3GeX3, where X = F, Cl, Br, I, At). Using computational methods, the analysed properties including band gap energies, dielectric constants, extinction coefficients, optical conductivity, absorption coefficients, reflectivity, refractive indices, and lattice constants. The results show a decreasing trend in band gap energies from 3.987 eV (CH3NH3GeF3) to 0.821 eV (CH3NH3GeAt3), indicating weaker bonding interactions with larger halide ions. Lattice constants increase from 4.981 Å (CH3NH3GeF3) to 6.068 Å (CH3NH3GeAt3), reflecting the larger ionic radii of the heavier halides. CH3NH3GeI3 displayed the highest dielectric constant, demonstrating a strong response to external electric fields. Extinction coefficients were significant within the 0 to 10 eV frequency range, with CH3NH3GeI3 showing the highest values. Optical conductivity peaked in CH3NH3GeI3, suggesting its potential for photovoltaic and light-emitting applications. The absorption coefficients indicated strong visible range absorption for CH3NH3GeI3. Reflectivity analysis revealed that CH3NH3GeF3 and CH3NH3GeCl3 had higher static reflectivity, suitable for applications requiring minimal reflection, whereas CH3NH3GeI3 exhibited minimal reflection, beneficial for high-efficiency photovoltaic cells. The refractive index analysis showed that CH3NH3GeI3 had the highest static refractive index, indicating significant optical density and light-slowing capabilities. These findings highlight the relationship between halide substitution and the optical properties of organometallic perovskite materials, providing insights for tailored technological applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abdulsalam, H., & Abdullahi, T. (2024). The Study of Lead-Free CH3NH3GeX3 (X=F, Cl, Br, I and At) for Optoelectronic Applications Using First-Principle. Nigerian Journal of Physics, 33(2), 30–40. https://doi.org/10.62292/njp.v33i2.2024.215
Section
Articles

References

Abate, A. (2017). Perovskite Solar Cells Go Lead Free. Joule. doi:https://doi.org/10.1016/j.joule.2017.09.007

Afromowitz, M. A. (1974). Refractive index of Ga1− xAlxAs. Solid State Communications, 15(1), 59-63. doi:https://doi.org/10.1016/0038-1098(74)90014-3

Babayigit, A., Duy Thanh, D., Ethirajan, A., Manca, J., Muller, M., Boyen, H.-G., & Conings, B. (2016). Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Scientific reports, 6(1), 18721.

Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., . . . Scheffler, M. (2009). Ab initio molecular simulations with numeric atom-centered orbitals. Computer Physics Communications, 180(11), 2175-2196. doi:https://doi.org/10.1016/j.cpc.2009.06.022

Burnett, D. (1927). The relation between refractive index and density. Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society.

Chen, Y., Sun, H., & Peng, W. (2017). 2D transition metal dichalcogenides and graphene-based ternary composites for photocatalytic hydrogen evolution and pollutants degradation. Nanomaterials, 7(3), 62. doi:https://doi.org/10.3390/nano7030062

Chouhan, L., Ghimire, S., Subrahmanyam, C., Miyasaka, T., & Biju, V. (2020). Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews, 49(10), 2869-2885. doi:https://doi.org/10.1039/c9cs00848a

Dresselhaus, M. S., Dresselhaus, G., & Jorio, A. (2007). Group theory: application to the physics of condensed matter: Springer Science & Business Media.

Gervais, F. (2002). Optical conductivity of oxides. Materials Science and Engineering: R: Reports, 39(2-3), 29-92. doi:https://doi.org/10.1016/S0927-796X(02)00073-6

Hoefler, S. F., Trimmel, G., & Rath, T. (2017). Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh Chem, 148(5), 795-826. doi:https://doi.org/10.1007/s00706-017-1933-9

Hutter, E. M., Eperon, G. E., Stranks, S. D., & Savenije, T. J. (2015). Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. The journal of physical chemistry letters, 6(15), 3082-3090. doi:https://doi.org/10.1021/acs.jpclett.5b01361

Kalyanaraman, S., Shajinshinu, P., & Vijayalakshmi, S. (2015). Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal. Journal of Physics and Chemistry of Solids, 86, 108-113. doi:https://doi.org/10.1016/j.jpcs.2015.07.007

Lu, X., Zhao, Z., Li, K., Han, Z., Wei, S., Guo, C., . . . Wu, C.-m. L. (2016). First-principles insight into the photoelectronic properties of Ge-based perovskites. RSC advances, 6(90), 86976-86981. doi:https://doi.org/10.1039/C6RA18534G

Makin, R. A., York, K., Durbin, S. M., & Reeves, R. J. (2020). Revisiting semiconductor band gaps through structural motifs: An Ising model perspective. Physical Review B, 102(11), 115202. doi:https://doi.org/10.1103/PhysRevB.102.115202

Mehta, V., Conkel, C., Cochran, A., & Ravindra, N. (2022). Materials for Antireflection Coatings in Photovoltaics—An Overview. Paper presented at the TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings.

Mistrik, J., Kasap, S., Ruda, H. E., Koughia, C., & Singh, J. (2017). Optical properties of electronic materials: fundamentals and characterization. Springer handbook of electronic and photonic materials, 1-1. doi:https://doi.org/10.1007/978-3-319-48933-9_3

Palik, E. D. (1998). Handbook of optical constants of solids (Vol. 3): Academic press.

Saha, S., Sinha, T., & Mookerjee, A. (2000). Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Physical Review B, 62(13), 8828. doi:https://doi.org/10.1103/PhysRevB.62.8828

Smith, B. (2023). Halogenated Organic Compounds. doi:https://doi.org/10.56530/spectroscopy.vo3774k1

Stoumpos, C. C., & Kanatzidis, M. G. (2015). The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts of chemical research, 48(10), 2791-2802. doi:https://doi.org/10.1021/acs.accounts.5b00229

Stoumpos, C. C., & Kanatzidis, M. G. (2016). Halide Perovskites: poor Man's high‐performance semiconductors. Advanced Materials, 28(28), 5778-5793. doi:https://doi.org/10.1002/adma.201600265

Ujihara, K. (1972). Reflectivity of metals at high temperatures. Journal of Applied Physics, 43(5), 2376-2383. doi:https://doi.org/10.1063/1.1661506

Umadevi, D., & Watson, G. W. (2019). Quasiparticle GW Calculations on lead-free hybrid germanium iodide perovskite CH3NH3GeI3 for photovoltaic applications. ACS omega, 4(3), 5661-5669. doi:https://doi.org/10.1021/acsomega.8b03291

Valizade, M., Heyhat, M., & Maerefat, M. (2019). Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors. Solar Energy Materials and Solar Cells, 195, 71-80. doi:https://doi.org/10.1016/j.solmat.2019.01.050

Wang, L. (2008). Measuring optical absorption coefficient of pure water in UV using the integrating cavity absorption meter. (Doctor of Philosophy), Texas A&M University. Retrieved from https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/85959/Wang.pdf?sequence=1

Wu, D., Lei, L., Xie, M., Xu, P., & Xu, S. (2023). High-performance metamaterial light absorption from visible to near-infrared assisted by anti-reflection coating. Paper presented at the Photonics.

Ye, Z.-T., Ho, W.-T., & Chen, C.-H. (2021). Highly reflective thin-film optimization for full-angle micro-LEDs. Nanoscale Research Letters, 16, 1-12. doi:https://doi.org/10.1186/s11671-021-03611-1

Yuan, Y., Xu, R., Xu, H.-T., Hong, F., Xu, F., & Wang, L.-J. (2015). Nature of the band gap of halide perovskites ABX3(A= CH3NH3,Cs; B = Sn, Pb; X= Cl, Br, I): First-principles calculations. Chin. Phys. B 24(11), 5. doi:https://doi.org/10.1088/1674-1056/24/11/116302

Yuqiu, J., Yuanyuan, L., Jia, L., Mang, N., & Zhenqing, Y. (2017). Exploring electronic and optical properties of CH3NH3GeI3 perovskite: Insights from the first principles. Computational and Theoretical Chemistry, 1114, 20-24. doi:https://doi.org/10.1016/j.comptc.2017.05.027