Tailoring Structural, Morphological, and Photocatalytic Properties of ZnO-ZrO2 Nanocomposites: Influence of Calcination Temperature
DOI:
https://doi.org/10.62292/10.62292/njp.v34i2.2025.359Keywords:
Semiconductor, Nanocomposite, Calcination, Crystallinity, (ZnO)0.8 (ZrO2)0.2Abstract
This study presents the synthesis and characterization of (ZnO)0.8(ZrO2)0.2 nanocomposites using a polyvinylpyrrolidone (PVP)-assisted thermal route, with calcination temperatures ranging from 500 °C to 800 °C. X-ray diffraction (XRD) confirmed the coexistence of hexagonal ZnO and monoclinic ZrO₂ phases, with crystallinity progressively improving with temperature. Crystallite sizes increased from ~11.0 nm at 500 °C to ~32.5 nm at 800 °C, as confirmed by both XRD and high-resolution transmission electron microscopy (TEM). Morphological evolution demonstrated controlled particle growth and uniform dispersion, while photoluminescence (PL) spectra revealed enhanced near-band-edge emissions and reduced deep-level emissions at higher temperatures, indicating suppressed electron–hole recombination. Notably, calcination at 700–800 °C provided an optimal balance between crystallinity and defect passivation. These results highlight the critical role of calcination temperature in tailoring structural, morphological, and optical properties, thereby enhancing the photocatalytic efficiency of ZnO-ZrO2 composites for potential use in energy conversion and environmental remediation technologies.
Downloads
References
Al-Hada, N. M., Saion, E., Kamari, H. M., Flaifel, M. H., Shaari, A. H., Talib, Z. A., Abdullahi, N., Baqer, A. A., & Kharazmi, A. (2016). Structural, morphological and optical behaviour of PVP capped binary (ZnO) 0.4 (CdO) 0.6 nanoparticles synthesised by a facile thermal route. Materials Science in Semiconductor Processing, 53, 56-65. https://doi.org/10.1016/j.mssp.2016.06.004
Al-Hada, N. M., Saion, E. B., Shaari, A. H., Kamarudin, M. A., Flaifel, M. H., Ahmad, S. H., & Gene, S. A. (2014). A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PloS one, 9(8), e103134. https://doi.org/10.1371/journal.pone.0103134
Alzahrani, J. S., Midala, I. H., Kamari, H. M., Al-Hada, N. M., Tim, C. K., Nidzam, N. N. S., Alrowaili, Z., & Al-Buriahi, M. (2022). Effect of Calcination Temperature on the Structural and Optical Properties of (ZnO) 0.8 (ZrO2) 0.2 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 32(5), 1755-1765. https://doi.org/10.1007/s10904-022-02238-8
Bandopadhyay, K., & Mitra, J. (2015). Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal? Rsc Advances, 5(30), 23540-23547. https://doi.org/10.1039/C5RA00355E
Cairns, A. B., & Goodwin, A. L. (2013). Structural disorder in molecular framework materials. Chemical society reviews, 42(12), 4881-4893. https://doi.org/10.1039/C3CS35524A
Chitoria, A. K., Mir, A., & Shah, M. (2023). A review of ZrO2 nanoparticles applications and recent advancements. Ceramics international. https://doi.org/10.1016/j.ceramint.2023.06.296
Deepika, R., & Veerakumar, P. (2024). Microwave-assisted hydrothermal synthesis of ZnO@ ZrO2 nanohybrid for biomedical and photocatalytic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 688, 133574. https://doi.org/10.1016/j.colsurfa.2024.133574
Gene, S. A., Saion, E. B., Shaari, A. H., Kamarudeen, M. A., & Al-Hada, N. M. (2015). RETRACTED: Fabrication and Characterization of Nanospinel ZnCr2O4 Using Thermal Treatement Method. Advanced materials research, 1107, 301-307. https://doi.org/10.1155/2014/416765
Goodarz Naseri, M., Saion, E. B., & Kamali, A. (2012). An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. International Scholarly Research Notices, 2012. https://doi.org/10.5402/2012/604241
Gurushantha, K., Renuka, L., Anantharaju, K., Vidya, Y., Nagaswarupa, H., Prashantha, S., & Nagabhushana, H. (2017). Photocatalytic and photoluminescence studies of ZrO2/ZnO nanocomposite for LED and waste water treatment applications. Materials Today: Proceedings, 4(11), 11747-11755. https://doi.org/10.1016/j.matpr.2017.09.091
Kamari, H. M., Al-Hada, N. M., Baqer, A. A., Shaari, A. H., & Saion, E. (2019). Comprehensive study on morphological, structural and optical properties of Cr 2 O 3 nanoparticle and its antibacterial activities. Journal of Materials Science: Materials in Electronics, 30, 8035-8046. https://doi.org/10.1007/s10854-019-01125-2
Kamari, H. M., Al-Hada, N. M., Saion, E., Shaari, A. H., Talib, Z. A., Flaifel, M. H., & Ahmed, A. A. A. (2017). Calcined solution-based PVP influence on ZnO semiconductor nanoparticle properties. Crystals, 7(2), 2. https://doi.org/10.3390/cryst7020002
Kayani, Z. N., Saleemi, F., & Batool, I. (2015). Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A, 119, 713-720. https://doi.org/10.1007/s00339-015-9019-1
Keiteb, A. S., Saion, E., Zakaria, A., & Soltani, N. (2016). Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. Journal of Nanomaterials, 2016(1), 1913609. https://doi.org/10.1155/2016/1913609
Kocjan, A., Logar, M., & Shen, Z. (2017). The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Scientific reports, 7(1), 2541. https://doi.org/10.1038/s41598-017-02760-7
Koebel, M. M., Jones, L. C., & Somorjai, G. A. (2008). Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. Journal of Nanoparticle Research, 10(6), 1063-1069. https://doi.org/10.1007/s11051-008-9370-7
Kubiak, A., Siwińska-Ciesielczyk, K., & Jesionowski, T. (2018). Titania-based hybrid materials with ZnO, ZrO2 and MoS2: A review. Materials, 11(11), 2295. https://doi.org/10.3390/ma11112295
Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 88, 428-448. https://doi.org/10.1016/j.watres.2015.09.045
Liao, M.-H., Hsu, C.-H., & Chen, D.-H. (2006). Preparation and properties of amorphous titania-coated zinc oxide nanoparticles. Journal of Solid State Chemistry, 179(7), 2020-2026. https://doi.org/10.1016/j.jssc.2006.03.042
López, U., Lemus, A., Hidalgo, M., López González, R., Quintana Owen, P., Oros-Ruiz, S., Uribe López, S., & Acosta, J. (2019). Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/1015876
Maaz, K., Karim, S., Mumtaz, A., Hasanain, S., Liu, J., & Duan, J. (2009). Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. Journal of Magnetism and Magnetic Materials, 321(12), 1838-1842. https://doi.org/10.1016/j.jmmm.2008.11.098
Mariyappillai, V., Shiyamala, C., Abisheik, T., Tiffany, M., Pandiyan, V., Senthilraja, A., Afzal, M., Barmavatu, P., Shanmugaraj, K., & Balu, K. (2025). Zr-modified ZnO nanoparticles: Optimized photocatalytic degradation and antibacterial efficiency for pollution control. Ceramics international. https://doi.org/10.1016/j.ceramint.2025.02.402
Midala, I. H., Kamari, H. M., Al-Hada, N. M., Tim, C. K., Muhamad, S., Hamza, A. M., Abubakar, T. R., & Nuhu, I. M. (2019). Structural, morphological and optical properties of (ZnO) 0.2 (ZrO2) 0.8 nanoparticles. Applied Physics A, 125(9), 1-10. https://doi.org/10.1007/s00339-019-2950-9
Park, S., Kim, C.-H., Lee, W.-J., Sung, S., & Yoon, M.-H. (2017). Sol-gel metal oxide dielectrics for all-solution-processed electronics. Materials Science and Engineering: R: Reports, 114, 1-22. https://doi.org/10.1016/j.mser.2017.01.003
Precious Ayanwale, A., & Reyes-López, S. n. Y. (2019). ZrO2–ZnO nanoparticles as antibacterial agents. ACS omega, 4(21), 19216-19224. http://dx.doi.org/10.1021/acsomega.9b02527
Sathyaseelan, B., Manikandan, E., Baskaran, I., Senthilnathan, K., Sivakumar, K., Moodley, M., Ladchumananandasivam, R., & Maaza, M. (2017). Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications. Journal of alloys and compounds, 694, 556-559. https://doi.org/10.1016/j.jallcom.2016.10.002
Shakir, H. A., Alsaffar, M. A., Mageed, A. K., Sukkar, K. A., & Ghany, M. A. A. (2024). Optimizing Photocatalytic Lead Removal from Wastewater Using ZnO/ZrO2: A Response Surface Methodology Approach. ChemEngineering, 8(4), 72. https://doi.org/10.3390/chemengineering8040072
Sherly, E., Vijaya, J. J., Selvam, N. C. S., & Kennedy, L. J. (2014). Microwave assisted combustion synthesis of coupled ZnO–ZrO2 nanoparticles and their role in the photocatalytic degradation of 2, 4-dichlorophenol. Ceramics international, 40(4), 5681-5691. https://doi.org/10.1016/j.ceramint.2013.11.006.
Sun, Y., Zhang, W., Li, Q., Liu, H., & Wang, X. (2023). Preparations and applications of zinc oxide based photocatalytic materials. Advanced Sensor and Energy Materials, 100069. https://doi.org/10.1016/j.mseb.2021.115363
Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., & Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B, 272, 115363. https://doi.org/10.1016/j.mseb.2021.115363
Ullah, A., Ahn, C. W., Hussain, A., & Kim, I. W. (2010). The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0. 5 (Na0. 78K0. 22) 0.5 TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Current Applied Physics, 10(6), 1367-1371. https://doi.org/10.1016/j.cap.2010.05.004
Vickers, M., Kappers, M., Datta, R., McAleese, C., Smeeton, T., Rayment, F., & Humphreys, C. (2005). In-plane imperfections in GaN studied by x-ray diffraction. Journal of Physics D: Applied Physics, 38(10A), A99. https://doi.org/10.1088/0022-3727/38/10A/019
Vitor, G., Palma, T., Vieira, B., Lourenço, J., Barros, R., & Costa, M. C. (2015). Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Minerals Engineering, 75, 85-93. https://doi.org/10.1016/j.mineng.2014.12.003
Wante, H. P., Aidan, J., & Ezike, S. C. (2021). Efficient dye-sensitized solar cells (DSSCs) through atmospheric pressure plasma treatment of photoanode surface. Current Research in Green and Sustainable Chemistry, 4, 100218. https://doi.org/10.1016/j.crgsc.2021.100218
Yousefi, R., Beheshtian, J., Seyed‐Talebi, S. M., Azimi, H., & Jamali‐Sheini, F. (2018). Experimental and theoretical study of enhanced photocatalytic activity of Mg‐doped ZnO NPs and ZnO/rGO nanocomposites. Chemistry–An Asian Journal, 13(2), 194-203. https://doi.org/10.1002/asia.201701423
Zhang, Q., Xu, X., Liu, Y., Xu, M., Deng, S., Chen, Y., Yuan, H., Yu, F., Huang, Y., & Zhao, K. (2017). A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals. Scientific reports, 7(1), 46424. https://doi.org/10.1038/srep46424.