A Review of the Revised Soil Classification System (RSCS) Based on Plasticity and Electrical Sensitivity to Pore-Fluid Chemistry

Authors

  • Emmanuel Ike Physics Department, Modibbo Adama University, Yola.
  • S. C. Ezike Physics Department, Modibbo Adama University, Yola.
  • A. S. Oniku Physics Department, Modibbo Adama University, Yola.
  • J. O. Osumeje Physics Department, Ahmadu Bello University, Zaria, Nigeria

DOI:

https://doi.org/10.62292/njp.v33i4.2024.269

Keywords:

Fine-grained soils, Plasticity, Electrical Sensitivity, Pore-Fluid Chemistry, Revised Soil Classification

Abstract

Environmental problems involving subsurface flow, sediment stability analyses, submarine excavation, engineered flow systems like groundwater pollutant movement and remediation, waste and barrier containment systems, hydrocarbon migration, resource recovery, and energy extraction applications are among the biggest challenges in recent times. Therefore, understanding the response of soil fabrics in these submerged conditions via soil classification becomes very crucial so as to ensure accurate assessment of the integrity and safety of underground constructions. However, limitations of the traditional Unified Soil Classification System (USCS) include the adoption of arbitrary criteria predicated on grain size distribution and the estimation of soil consistency limit using only deionized water, as such hinders the effective prediction of soil properties. This is in addition to having rigid fines plasticity boundaries and neglecting the crucial impact of pore-fluid chemistry (such as pH, ionic concentration, and permittivity) on the behaviour of fine-grained soil. On the other hand, the Revised Soil Classification System (RSCS) is physics-inspired and data-driven, simple, precise, and repeatable, though not without some fundamental constraints. The current study provides extensive and critical evaluation of the revised soil classification scheme based on plasticity and electrical sensitivity to pore-fluid chemistry. This was conducted by collating and synthesizing vast amount of primary research findings, and formulating a more coherent perspective, identifying potential knowledge gaps, and making recommendations for further studies. This study will inspire fine-tuning of the novel soil classification system and stimulate further research for widespread adoption in geotechnical, geophysical and other geo-related applications.

Downloads

Download data is not yet available.

References

AASHTO. (1950). Standard methods of mechanical analysis of soil In: Designate T-88-49. American Association of State Highway Officials.

Andersson-Skold, Y., Torrance, J. K., Lind, B., Oden, K., Stevens, R. L., & Rankka, K. (2005). Quick clay - A case study of chemical perspective in Southwest Sweden. Engineering Geology, 82(2), 107 - 118.

Arduino et al. Personal communication University of Washington.

ASCE. (1957). Progress report of the committee on significance of tests for highway materials of the highway division. J. Highway Div. Am. Soc. Civil Eng, 83 (HW14), 1-37.

ASTM. (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-10e1, West Conshohocken, PA.

ASTM D4318. (2005). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International.

Atterberg, A. (1905). Die rationelle klassifikation der sande und kiese. Chemiker—Zeitung 15.

Austad, T., Strand, S., Madland, M. V., Puntervold, T., & Korsnes, R. I. (2008). Seawater in chalk: An EOR and compaction fluid. Spe Reservoir Evaluation & Engineering, 11(4), 648 - 654.

Bandini, P., Hend, H., & Shatnawi, A. (2017). Discussion of “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. J. Geotech. Geoenviron. Eng, 143, 07017011 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001420

Barnes, G. E. (2009). An apparatus for the plastic limit and workability of soils. Proc. Inst. Civ. Eng. Geotech. Eng. , 162(3), 175–185. . https://doi.org/https://doi.org/10.1680/geng.2009.162.3.175.

Barnes, G. E. (2013a). An apparatus for the determination of the workability and plastic limit of clays. Appl. Clay Sc, 80-81, 281–290. https://doi.org/ https://doi.org/10.1016/j.clay.2013.04.014.

Barnes, G. E. (2013b). The Plastic Limit and Workability of Soils [Ph.D. Thesis]. The University of Manchester, 427.

BS 1377. (1990). Methods of test for soils for civil engineering purpose. British Standards Institution (BSI), Milton Keynes, UK.

BSI. (1957). British Standard Code of Practice - CP 2001. Site Investigation. British Standards Institution, London.

Casagrande, A. (1947). Classification and identification of soils Trans. ASCE 113(1), 901 - 930. https://doi.org/https://doi.org/10.1061/TACEAT.0006109

Cordero J. Personal communication. Polytechnic University of Catalonia.

Das, B. M. (2004). Principles of foundation engineering. Pacific Grove, CA: Thomson/Brooks/Cole.

Dolinar, B. (2009). Predicting the hydraulic conductivity of saturated clays using plasticity–value correlations. Appl. Clay Sci, 45(1-2), 90–94.

Frederick, J. M., & Buffett, B. A. (2015). Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. Journal of Geophysical Research-Earth Surface, 120(3), 417-432.

Gilboy, G. (1930). Notes on Soil Mechanics. Massachusetts Institute of Technology, Boston, MA.

Glass, R. J., Conrad, S. H., & Peplinski, W. (2000). Gravity-destabilized nonwetting phase invasion in macroheterogeneous porous media: Experimental observations of invasion dynamics and scale analysis. Water Resources Research, 36(11), 3121 - 3137.

Glossop, R., & Skempton, A. W. (1945). Particle-size in silts and sands. J. Inst. Civil Eng, 25(2), 81–105. https://doi.org/ https://doi.org/10.1680/ijoti.1945.13927

Goldbeck, A. T., & Jackson, F. R. (1921). Tests for Subgrade Soils. Public Roads, 4(3), 15–21.

Goodarzi, A. R., Najafi Fateh, S., & Shekary, H. (2016). Impact of organic pollutants on the macro and microstructure responses of Na-bentonite. Appl. Clay Sci., 121–122, 17–28.

Guggenheim, S., & Martin, R. T., 1995.,. (1995). Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. . Clay Clay Miner, 43(2), 255–256. https://doi.org/https://doi.org/10.1346/CCMN.1995.0430213

Herle et al. Personal Communication. Technische Universität Dresden.

Holtz, R. D., & Kovacs, W. D. (1981). An introduction to geotechnical engineering. Englewood Cliffs, NJ: Prentice-Hall.

Ike, E., Park, J., & Lee, C. (2023). Sedimentation Behavior of Clays in Response to Pore-Fluid Chemistry: Effect of Ionic Concentration and pH on Its Trends. KSCE J Civ Eng, 17, 1502–1511. https://doi.org/ https://doi.org/10.1007/s12205-023-0474-5

Israelachvili, J. N. (2011). Intermolecular and surface forces. Academic Press, San Diego, CA.

Jang, I., & Santamarina, J. C. (2017a). Closure to “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering, 143(7), 07017013. https://doi.org/10.1061/(asce)gt.1943-5606.0001694

Jang, J. (2014). Gas-charged sediments: Phenomena and characterization. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.

Jang, J. (2022). Influence of Pore Fluid Chemistry on Electrical Force-Dominated Fabrics of Fine-Grained Soils: Implications in Submerged Sediments. Journal of the Korean Society of Hazard Mitigation, 22(3), 151-158. https://doi.org/10.9798/kosham.2022.22.3.151

Jang, J., Cao, S. C., Stern L. A., Jung, J., & Waite, W. F. (2018). Impact of Pore Fluid Chemistry on Fine-Grained Sediment Fabric and Compressibility. Journal of Geophysical Research: Solid Earth, 123, 5495-5514.

Jang, J., & Santamarina, J. C. (2016). Fines Classification Based on Sensitivity to Pore-Fluid Chemistry. Journal of Geotechnical and Geoenvironmental Engineering, 142(4). https://doi.org/10.1061/(asce)gt.1943-5606.0001420

Jang, J., & Santamarina, J. C. (2017b). Closure to “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering, 143, 07017013.

Jang., J., & Santamarina., C. (2017). {Long, 2006 #1065}” by Junbong Jang and J. Carlos Santamarina. . Journal of Geotechnical and Geoenvironmental Engineering,, 143(7). https://doi.org/doi:10.1061/(asce)gt.1943-5606.0001694

K

houbani, A., & Evans, T. M. (2017). Discussion of “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. J. Geotech. Geoenviron. Eng, 143(7), 07017007 https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0001420

Kopf, A. J., Kasten, S., & Blees, J. (2010). Geochemical evidence for groundwatercharging of slope sediments: The Nice Airport 1979 landslide and tsunami. Submarine Mass Movements and Their Consequences. D. C. Mosher, R. C. Shipp, L. Moscardelli, J. D. Chaytor, C. D. P. Baxter, H. J. Lee and R. Urgeles, ed. New York, Springer, 203 - 214.

Kulhawy, F. H., & Chen, J. R. (2009). Identification and description of soils containing very coarse fractions. J. Geotech. Geoenviron. Eng, 135(5(635)), 635 – 646. https://doi.org/https://doi.org/10.1061/(ASCE)1090-0241

Lee, J. M., Shackelford, C. D., Benson, C. H., Jo, H. Y., & Edil, T. B. (2005). Correlating index properties and hydraulic conductivity of geosynthetic clay liners. J. Geotech. Geoenviron. Eng, 1(31), 1319–1329. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1319), 1319–1329.

Mackay, D. M., & Cherry, J. A. (1989). Groundwater Contamination - Pump-and-Treat Remediation. Environmental Science & Technology, 23(6), 630-636.

Martinez, A., Frost, J. D., Markku, P., Hanumasagar, S. S., & Jin. L. (2017). Discussion of “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. J. Geotech. Geoenviron. Eng, 143(7). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001420

Meegoda, N. J., & Ratnaweera, P. (1994). Compressibility of contaminated fine-grained soils. Geotech. Test. J., 17(1), 101–112.

Mishra, A. K., Ohtsubo, M., Li, L. Y., & Higashi, T. (2012). Influence of various factors on the difference in the liquid limit values determined by Casagrande’s and fall cone method. Environ. Earth Sci., 65(1), 21–27.

Mitchell, J. K., & Soga, K. (2005a). Fundamentals of soil behavior.

Mitchell, J. K., & Soga, K. (2005b). Fundamentals of soil behavior, . Hoboken, N.J., John Wiley & Sons.

Mohan, K. K., Vaidya, R. N., Reed, M. G., & Fogler, H. S. (1993). Water Sensitivity of Sandstones Containing Swelling and Non-Swelling Clays. Colloids and Surfaces a Physichochemical and Engineering Aspects, 73, 237 - 254.

Montoro, M. A., & Francisca, F. M. (2017). Discussion of “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. J. Geotech. Geoenviron. Eng, 143(7), 07017012.

Moreno-Maroto, J. M..,, Alonso-Azcárate, J., & O'Kelly, B. C.,. (2021). Review and critical examination of fine-grained soil classification systems based on plasticity. Applied Clay Science, 200, 105955. https://doi.org/https://doi.org/10.1016/j.clay.2020.105955

Narsilio, G., Disfani, M., & Orangi, A. (2017). Discussion of “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering.

Oyama, H., Abe, S., Yoshida, T., Sato, T., Nagao, J., Tenma, N., & Narita, H. (2016). Experimental Study of Mud Erosion at the Interface of an Artificial Sand-Mud Alternate Layer. . Journal of Natural Gas Science and Engineering, 34, 1106-1114.

Palomino, A. M., & Santamarina, J. C. (2005). Fabric Map for Kaolinite: Effects of pH and Ionic Concentration on Behavior. Clays and Clay Minerals, 53(3), 209 - 222.

Polidori, E. (2009). Reappraisal of the activity of clays. Activity Chart. Soils Found. 49(3), 431-441. https://doi.org/ https://doi.org/10.3208/sandf.49.431

Prahara, I., Dicky M., Zufialdi Z., Haryadi P., & Arifan J. S. (2021). Soil characteristics, revised soil classification, and soil geochemistry related to soil suitability of West Lampung tropical volcanic residual soil, Sumatra, Indonesia. Soil Sci. Ann., , 72(3), 142032. https://doi.org/https://doi.org/10.37501/soilsa/142032

Prakash, K., & Sridharan, A. (2021). Classification of non-plastic soils. Ind. Geotech. J., 42, 118–123. https://doi.org/https://doi.org/10.1007/s40098-012-0007-5.

Pudlo, D., Henkel, S., Reitenbach, V., Albrecht, D., Enzmann, F., Heister, K., Pronk, G., Ganzer, L., & Gaupp, R. (2015). The Chemical Dissolution and Physical Migration of Minerals Induced during CO2 Laboratory Experiments: their Relevance for Reservoir Quality.". Environmental Earth Sciences, 73(11), 7029 - 7042.

Rao, P. S. C., Annable, M. D., Sillan, R. K., Dai, D. P., Hatfield, K., Graham, W. D., Wood, A. L., & Enfield, C. G. (1997). Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Resources Research, 33(12), 2673 - 2686.

Santamarina, J. C., Klein, K. A., Wang, Y. H., & Prencke, E. (2002a). Specific surface: Determination and relevance. Canadian Geotechnical Journal, 39, 233 - 241.

Santamarina, J. C., Klein, K. A,, Palomino, A., & Guimaraes, M. S. (2002b). Micro-scale aspects of chemical-mechanical coupling. Inter-141 particle forces and fabric, Balkema, Rotterdam, Netherlands, , 47–64.

Santamarina, J. C., Park, J., Terzariol, M., Cardona, A., Castro, G. M., Cha, W., Garcia, A. V., Hakiki, F., Lyu, C., Salva, M., Shen, Y., Sun, Z., & Chong, S. (2019). Soil Properties: Physics Inspired, Data Driven. Geotechnical Fundamentals for Addressing New World Challenges.

Schmitz, R. M., Schroeder, C., & Charlier, R. (2004a). Chemo–mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits. . Appl. Clay Sci. , 26, 351–358. . https://doi.org/https://doi.org/10.1016/j.clay.2003.12.015

Schmitz, R. M., Schroeder, C., & Charlier, R. (2004b). Chemomechanical interaction in clay: A correlation between clay mineralogy and Atterberg limits. Appl. Clay Sci., , 26(1-4), 351 – 358.

Schneider, J. A., Lee, J. K., & Fratta, D. (2017). Discussion of “Fines Classification Based on Sensitivity to Pore-Fluid Chemistry” by Junbong Jang and J. Carlos Santamarina. J. Geotech. Geoenviron. Eng., 143(7), 07017010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001420

Spagnoli, G., Sridharan, A., Oreste, P., & Di Matteo, L. (2017). A probabilistic approach for the assessment of the influence of the dielectric constant of pore fluids on the liquid limit of smectite and kaolinite. . Appl. Clay Sci. , 145, 37–43. https://doi.org/https://doi.org/10.1016/ j.clay.2017.05.009.

Sridharan, A., & Nagaraj, H. B. (2005). Hydraulic conductivity of remolded fine-grained soils versus index properties. Geotech. and Geological Eng, 23(1), 43–60.

Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., Laberg, J. S., Long, D., Mienert, J., Trincardi, F., Urgeles, R., Vorren, T. O., & Wilson, C. (2004). Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Marine Geology, 213(1 - 4), 291-321.

Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. Franz Deuticke, Leipzig und Wien.

Won, J., Park, J., Kim, J., & Jang, J. (2021). Impact of Particle Sizes, Mineralogy and Pore Fluid Chemistry on the Plasticity of Clayey Soils. . Sustainability, 13, 11741. https://doi.org/https://doi.org/10.3390/su132111741

Wood, D. M., & Wroth, C. P. (1978). The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, 15(2), 137 - 145.

Downloads

Published

2024-12-31

How to Cite

A Review of the Revised Soil Classification System (RSCS) Based on Plasticity and Electrical Sensitivity to Pore-Fluid Chemistry. (2024). Nigerian Journal of Physics, 33(4), 59-77. https://doi.org/10.62292/njp.v33i4.2024.269

Similar Articles

21-30 of 80

You may also start an advanced similarity search for this article.