Comparison of Inter-atomic Pair Potential Curves of different GEAM iterated values for Sr and Ir
Main Article Content
Abstract
In this study, the inter-atomic pair potential curve of Sr and Ir are compared with the potential curve of Rose et al. (1984) using the values predicted in our earlier study (The surface energy calculation for fcc metals with negative Cauchy’s discrepancy using the GEAM), utilizing an EAM model developed by Oni-Ojo et al. (2007) that ha demonstrated efficacy in predicting the low index surface energies of Sr and Ir, both of which have negative Cauchy’s discrepancy.
Downloads
Article Details
References
Adams J.B. and Foiles S.M. (1990). Development of an embedded-atom potential for a bcc metal: Vanadium, Phys. Rev. B 41, 3316-3328.
Baskes M. I, (1987). Application of the Embedded-Atom Method to Covalent Materials: A Semi-empirical Potential for Silicon. Phys. Rev. Lett. 59, 2666-2669.
Baskes M. I., Nelson J.S., and Wright A. F. (1989). Semi-empirical modified embedded atom potentials for Silicon and Germanium, Phys. Rev. B 40, 6085-6094.
Baskes M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727-2742.
Daw M. S., Baskes M. I. (1983). Semi-empirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50, 1285-1287.
Daw M. S., Baskes M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29, 6443-6453.
Foiles S. M., Baskes M. I. and Daw M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983-7991,
Johnson R. A. (1988).Analytic nearest-neighbour model for fcc metals, Phys. Rev. B 37, 3924-3931.
Johnson R. A. and Oh D. J. (1989). Analytical Embedded Atom Method model for bcc metals. J. Mater. Res. 4, 1195-1201.
Oh D. J, Johnson R. A. (1988). Simple embedded atom method for fcc and hcp metals, J. Mater. Res. 3, 471-478.
Oni-Ojo A. A., Idiodi J. O. A. and Aiyohuyin E. O. (2007). Embedded atom method for materials with a negative Cauchy discrepancy, J. Nig. Math. Phys. Vol. 11, 509-514.
Oni-Ojo A. A, (2011), Surface energies of fcc metals within the embedded atom methods, M.Phil. Thesis, University of Benin, Edo state, Nigeria.
Oni-Ojo A. A., Onwusinkwue S, Aiyohuyin E. O. and Idiodi J. O. A. (2015). Surface Energy Calculation for a fcc metal Gold (Au) Using the GEAM, J. Nig. Math. Phys. Vol. 29, 125-130.
Oni-Ojo, A.A. Oni-Ojo F.O. and Aiyohuyin, E.O. (2023). Surface Energy Calculation for some Transition Metals using the GEAM. Nig. Journal of Phys. Vol 32(4), 41-44.
Oni-Ojo, A.A. Oni-Ojo F.O. and Aiyohuyin, E.O. (2023). An Approach towards a Self-Consistent EAM for bcc Metal Lithium and Vanadium. Nig. Journal of Phys. Vol 32(4), 169-173.
Rose J.H., Smith J. R., Guinea F., and Ferrante J. (1984). Universal features of the equation of state of metals, Phys. Rev. B 29, 2963-2969.
Simons G. and Wang H, (1977). Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press Cambridge, MA,
Smith J. R. and Banerjea A., (1987). New Approach to Calculation of Total Energies of Solids with Defects: Surface-Energy Anisotropies Phys. Rev. Letters 59, 2451-2454,
Yan-Wi Wen, Jian-Min Zhang, (2007). Surface energy calculation of the fcc metals by using the MAEAM, Computational material science, 144, 163-167.
Yan-Wi Wen, Jian-Min Zhang, (2008). Surface energy calculation of the bcc metals by using the MAEAM, Computational material science, 42, 281-285.
Yuan X., Takahashi K., Ouyang Y. and Onzawa T, (2003). Development of a modified embedded atom method for bcc transition metals: Lithium, Modelling Simul. Mater. Sci. Eng. Vol. 11, 447-456.