Surface Energy Calculation for FCC Metals with Negative Cauchy’s Discrepancy using the GEAM

Main Article Content

A. A. Oni-Ojo
E. O. Aiyohuyin

Abstract

The three low-index surfaces of fcc metals with negative Cauchy’s discrepancy, strontium (Sr) and Iridium (Ir) are here investigated using the generalized embedded-atom method (GEAM), a model developed by Oni-Ojo et al. (2007) and the corresponding surface energies calculated. The low-index surface energies studied are: ,  and , with having the lowest and having the highest energy value. The predicted values are in good agreement with the experimental values.

Downloads

Download data is not yet available.

Article Details

How to Cite
Oni-Ojo, A. A., & Aiyohuyin, E. O. (2024). Surface Energy Calculation for FCC Metals with Negative Cauchy’s Discrepancy using the GEAM. Nigerian Journal of Physics, 33(2), 66–69. https://doi.org/10.62292/njp.v33i2.2024.243
Section
Articles

References

Adams J.B. and Foiles S.M., Development of an embedded-atom potential for a bcc metal: Vanadium, Phys. Rev. B 41, 3316-3328. (1990).

Aghemenloh E. and Idiodi J.O.A., Equivalent-crystal theory of fcc metal surfaces, J. Nig. Math. Phys., Vol. 2. 271-284. (1998)

Baskes M. I, Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon. Phys. Rev. Lett. 59, 2666-2669. (1987).

Baskes M. I. Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727-2742. (1992)

Baskes M. I., Nelson J.S., and Wright A. F. Semiempirical modified embedded atom potentials for Silicon and Germanium, Phys. Rev. B 40, 6085-6094. (1989).

Daw M. S., Baskes M. I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50, 1285-1287. (1983).

Daw M. S., Baskes M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29, 6443-6453. (1984).

Foiles S. M., Baskes M. I. and Daw M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983-7991, (1986).

Idiodi J. O. A. and Aghemenloh E. On the problem of low surface energies within the embedded atom method, J. Nig. Math. Phys. Vol. 2, 285-296. (1998).

Idiodi J. O. A. and Aghemenloh E. Implementation of Equivalent Crystal theory within a generalized embedded-atom method, J. Nig. Math. Phys. Vol. 3, 167-178. (1999).

Johnson R. A. Analytic nearest-neighbour model for fcc metals, Phys. Rev. B 37, 3924-3931. (1988).

Johnson R. A and Oh D. J., Analytical Embedded Atom Method model for bcc metals. J. Mater. Res. 4, 1195-1201, (1989).

Oh D. J, Johnson R. A., Simple embedded atom method for fcc and hcp metals, J. Mater. Res. 3, 471-478, (1988).

Oni-Ojo A. A., Idiodi J. O. A. and Aiyohuyin E. O. Embedded atom method for materials with a negative Cauchy discrepancy, J. Nig. Math. Phys. Vol. 11, 509-514. (2007).

Oni-Ojo A. A, (2011), Surface energies of fcc metals within the embedded atom methods, M.Phil. Thesis, University of Benin, Edo state, Nigeria.

Smith J. R. and Banerjea A., New Approach to Calculation of Total Energies of Solids with Defects: Surface-Energy Anisotropies Phys. Rev. Letters 59, 2451-2454, (1987).

Yan-Wi Wen, Jian-Min Zhang, Surface energy calculation of the fcc metals by using the MAEAM, Computational material science, 144, 163-167. (2007).

Yan-Wi Wen, Jian-Min Zhang, Surface energy calculation of the bcc metals by using the MAEAM, Computational material science, 42, 281-285. (2008).

Yuan X., Takahashi K., Ouyang Y. and Onzawa T, Development of a modified embedded atom method for bcc transition metals: Lithium, Modelling Simul. Mater. Sci. Eng. Vol. 11, 447-456. (2003).