Examining the variations in the properties of chemically Pulverized carbons from Cocos nucifera across Nigeria's six political zones
Main Article Content
Abstract
High-power, renewable energy sources are needed to power the growing number of portable electronics and hybrid cars. Reassessing the pyrolysis of biomass, especially from easily accessible African tall coconut shells (Cocos nucifera), is a viable way to both meet energy needs and slow down global warming. This work describes a novel method for producing activated carbon from coconut shells obtained from six different regions of Nigeria by combining chemical pulverization and pyrolysis. After lignin was eliminated from the ground-up samples using sulfuric acid, they were pyrolyzed at different temperatures (650–850°C). To clarify the physicochemical characteristics of the activated carbons, a variety of sophisticated characterization methods were used, such as Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET) analysis. The findings showed an intriguing interaction between relative humidity and pyrolysis temperature which implies that moisture content of the precursor material plays a significant role in its viability for supercapacitor applications
Downloads
Article Details
References
Abdullah, S., Zubir, M. N. B. M., Muhamad, M. R. B., Newaz, K. M. S., Öztop, H. F., Alam, M. S., & Shaikh, K. (2023). Technological development of evaporative cooling systems and its integration with air dehumidification processes: A review. Energy and Buildings, 112805. doi.org/10.1016/j.enbuild.2023.112805
Ajien, A., Idris, J., Md Sofwan, N., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research, 41(1), 37-51.
Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources, 11(2), 3356-3372.
Chen, X., Zhang, J., Zhang, B., Dong, S., Guo, X., Mu, X., & Fei, B. (2017). A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Scientific reports, 7(1), 7362.
doi: 10.1038/s41598-017-06730-x
Cotrina Cabello, G. G., Ruiz Rodriguez, A., Husnain Gondal, A., Areche, F. O., Flores, D. D. C., Astete, J. A. Q., . & Cruz Nieto, D. D. (2023). Plant adaptability to climate change and drought stress for crop growth and production. CABI Reviews, (2023).
doi: 10.1079/cabireviews.2023.0004
Das, D., Samal, D. P., & Meikap, B. C. (2015). Preparation of activated carbon from green coconut shell and its characterization. J. Chem. Eng. Process Technol, 6(5), 1000248.
doi: 10.4172/2157-7048.1000248
De Groeve, M., Kale, E., Orr, S. A., & De Kock, T. (2023). Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity. Sustainability, 15(15), 11758. doi: 10.3390/su151511758
Dhillon, R. S., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and bioenergy, 48,75-89.
Onwumelu, D. C. (2023). Biomass-to-power: Opportunities and challenges for Nigeria. World Journal of Advanced Research and Reviews, 20(2), 001-023.
doi: 10.1016/j.biombioe.2012.11.005
Elmouwahidi, A., Bailón-García, E., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2017). Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 229, 219-228. doi: 10.1016/j.electacta.2017.01.152
Fang, Z., Huiying jiang, Qiu, W., Jiang, Z., Peng, Z., Tian, K., ... & Li, X. (2023). Lithium/Sodium Deposition Behavior and Dendrite Inhibition Mechanism on Metal-Modified and Nitrogen-Doped Carbon Nanotube Skeletons. The Journal of Physical Chemistry C, 127(6), 2835-2845. doi: 10.1021/acs.jpcc.2c07797
Foo, K. Y., & Hameed, B. H. (2012). Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters and adsorption performance. Chemical Engineering Journal, 184, 57-65.
doi: 10.1016/j.cej.2011.12.084
Gao, F., Qin, S. H., Zang, Y. H., Gu, J. F., & Qu, J. Y. (2020). Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Materials, 35(2), 121-130.doi: 10.1016/S1872-5805(20)60479-6
Hall, P. J., Mirzaeian, M., Fletcher, S. I., Sillars, F. B., Rennie, A. J., Shitta-Bey, G. O., ... & Carter, R. (2010). Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science, 3(9), 1238-1251.
doi: 10.1039/C0EE00004C
Jiang, Z. H., Yang, Z., So, C. L., & Hse, C. Y. (2007). Rapid prediction of wood crystallinity in Pinus elliotii plantation wood by near-infrared spectroscopy. Journal of wood science, 53, 449-453.
Kumagai, S., Sato, M., & Tashima, D. (2013). Electrical double-layer capacitance of micro-and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochimica acta, 114, 617-626.
doi: 10.1016/j.electacta.2013.10.060
Lekakou, C., Moudam, O., Markoulidis, F., Andrews, T., Watts, J. F., & Reed, G. T. (2011). Carbon-based fibrous EDLC capacitors and supercapacitors. Journal of Nanotechnology, 2011. doi: 10.1155/2011/409382
Lee, Y. J., Kim, G. P., Bang, Y., Yi, J., Seo, J. G., & Song, I. K. (2014). Activated carbon aerogel containing graphene as electrode material for supercapacitor. Materials Research Bulletin, 50, 240-245.doi: 10.1016/j.materresbull.2013.11.021 doi: 10.4172/2157-7048.1000248
Liu, R., Yang, J., Liu, R., Tang, Y., Huang, L., & Shuai, Q. (2022). Effects of Nanopore Size on the Adsorption of Sulfamerazine from Aqueous Solution by β-Ketoenamine Covalent Organic Frameworks. ACS Applied Nano Materials, 5(12), 17851-17858. doi: org/10.1021/acsanm.2c03806
Mahmoud, S. H., Gan, T. Y., & Zhu, D. Z. (2023). Impacts of climate change and climate variability on water resources and drought in an arid region and possible resiliency and adaptation measures against climate warming. Climate Dynamics, 1-27. doi: 10.1007/s00382-023-06795-7
Masthura, E., & Abdul, H. D. (2018). Effects of activation temperature on characteristics and microstructure of coconut shell-based activated carbon. Eurasian J. Anal. Chem, 4(13), 384-390 doi:10.1039/C000417K
Nankya, R., Opar, D. O., Kim, M. J., Paek, S. M., & Jung, H. (2020). Synergetic effect of nitrogen and sulfur co-doping in mesoporous graphene for enhanced energy storage properties in supercapacitors and lithium-ion batteries. Journal of Solid State Chemistry, 289, 121451. doi:10.1016/j.jssc.2020.121451
Ozoemena, K. I., & Chen, S. (Eds.). (2016). Nanomaterials in advanced batteries and supercapacitors (p. 423). Switzerland: Springer. doi: 10.1007/978-3-319-26082-2
Rippel, T. M., Mooring, E. Q., Tomasula, J., & Wimp, G. M. (2020). Habitat edge effects decrease litter accumulation and increase litter decomposition in coastal salt marshes. Landscape Ecology, 35, 2179-2190. doi: 10.1007/s10980-020-01108-3
Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental science & technology, 44(2), 827-833. doi: 10.1021/es902266r
Sahu, A., Sen, S., & Mishra, S. C. (2023). A comparative study on characterizations of biomass derived activated carbons prepared by both normal and inert atmospheric heating conditions. Journal of the Indian Chemical Society, 100(4), 100943.
doi: 10.1016/j.jics.2023.100943
Sammed, K. A., Farid, A., Mustafa, S., Kumar, A., Tabish, M., Khan, A. A., & Zhao, W. (2023). Developing next-generation supercapacitor electrodes by coordination chemistry-based advanced functional carbon nanostructures: Progress, Current challenges and prospects. Fuel Processing Technology, 250, 107896. doi: 10.1016/j.fuproc.2023.107896
ván, B., Juan, P., Luciana, A., Morales, J. M., & Thomas, K. (2023). Microclimate and species composition shape the contribution of fuel moisture to positive fire-vegetation feedback. Agricultural and Forest Meteorology, 330, 109289. doi: 10.1016/j.agrformet.2022.109289 doi: 10.1002/adma.201100984
Yakout, S. M., & El-Deen, G. S. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian journal of chemistry, 9, S1155-S1162.
doi: 10.1016/j.arabjc.2011.12.002
Yang, X., He, H., Lv, T., & Qiu, J. (2023). Fabrication of biomass-based functional carbon materials for energy conversion and storage. Materials Science and Engineering: R: Reports, 154, 100736.
doi: 10.1016/j.mser.2023.100736
Zhai, Y., Dou, Y., Zhao, D., Fulvio, P. F., Mayes, R. T., & Dai, S. (2011). Carbon materials for chemical capacitive energy storage. Advanced materials, 23(42), 4828-4850.
Zhang, J., Jin, X., & Yang, C. (2022). Efficient removal of organic pollutants in waste sulfuric acid by an advanced oxidation process using coconut shell-derived biochar to produce qualified poly aluminium sulfate. Separation and Purification Technology, 293, 121057. doi: 10.1016/j.seppur.2022.121057
Zhang, L. L., Zhou, R., & Zhao, X. S. (2010). Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 20(29), 5983-5992.
Zhang, Y., Zhang, Y., Lian, X., Zheng, Z., Zhao, G., Zhang, T., ... & Piao, S. (2023). Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. National Science Review, nwad108. doi: 10.1093/nsr/nwad108