Examining the variations in the properties of chemically Pulverized carbons from Cocos nucifera across Nigeria's six political zones

Main Article Content

I. I. Ajibade
G. Babaji
A. S. Gidado
Suriati Paiman
T. Sin Tee
Md Shazlly
Abolanle Saheed Adekunle

Abstract

High-power, renewable energy sources are needed to power the growing number of portable electronics and hybrid cars. Reassessing the pyrolysis of biomass, especially from easily accessible African tall coconut shells (Cocos nucifera), is a viable way to both meet energy needs and slow down global warming. This work describes a novel method for producing activated carbon from coconut shells obtained from six different regions of Nigeria by combining chemical pulverization and pyrolysis. After lignin was eliminated from the ground-up samples using sulfuric acid, they were pyrolyzed at different temperatures (650–850°C). To clarify the physicochemical characteristics of the activated carbons, a variety of sophisticated characterization methods were used, such as Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET) analysis. The findings showed an intriguing interaction between relative humidity and pyrolysis temperature which implies that moisture content of the precursor material plays a significant role in its viability for supercapacitor applications

Downloads

Download data is not yet available.

Article Details

How to Cite
Ajibade, I. I., Babaji, G., Gidado, A. S., Paiman, S., Sin Tee, T., Shazlly, M., & Adekunle, A. S. (2024). Examining the variations in the properties of chemically Pulverized carbons from Cocos nucifera across Nigeria’s six political zones. Nigerian Journal of Physics, 33(1), 172–183. https://doi.org/10.62292/njp.v33i1.2024.183
Section
Review Articles

References

Abdullah, S., Zubir, M. N. B. M., Muhamad, M. R. B., Newaz, K. M. S., Öztop, H. F., Alam, M. S., & Shaikh, K. (2023). Technological development of evaporative cooling systems and its integration with air dehumidification processes: A review. Energy and Buildings, 112805. doi.org/10.1016/j.enbuild.2023.112805

Ajien, A., Idris, J., Md Sofwan, N., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research, 41(1), 37-51.

Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources, 11(2), 3356-3372.

Chen, X., Zhang, J., Zhang, B., Dong, S., Guo, X., Mu, X., & Fei, B. (2017). A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Scientific reports, 7(1), 7362.

doi: 10.1038/s41598-017-06730-x

Cotrina Cabello, G. G., Ruiz Rodriguez, A., Husnain Gondal, A., Areche, F. O., Flores, D. D. C., Astete, J. A. Q., . & Cruz Nieto, D. D. (2023). Plant adaptability to climate change and drought stress for crop growth and production. CABI Reviews, (2023).

doi: 10.1079/cabireviews.2023.0004

Das, D., Samal, D. P., & Meikap, B. C. (2015). Preparation of activated carbon from green coconut shell and its characterization. J. Chem. Eng. Process Technol, 6(5), 1000248.

doi: 10.4172/2157-7048.1000248

De Groeve, M., Kale, E., Orr, S. A., & De Kock, T. (2023). Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity. Sustainability, 15(15), 11758. doi: 10.3390/su151511758

Dhillon, R. S., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and bioenergy, 48,75-89.

Onwumelu, D. C. (2023). Biomass-to-power: Opportunities and challenges for Nigeria. World Journal of Advanced Research and Reviews, 20(2), 001-023.

doi: 10.1016/j.biombioe.2012.11.005

Elmouwahidi, A., Bailón-García, E., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2017). Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 229, 219-228. doi: 10.1016/j.electacta.2017.01.152

Fang, Z., Huiying jiang, Qiu, W., Jiang, Z., Peng, Z., Tian, K., ... & Li, X. (2023). Lithium/Sodium Deposition Behavior and Dendrite Inhibition Mechanism on Metal-Modified and Nitrogen-Doped Carbon Nanotube Skeletons. The Journal of Physical Chemistry C, 127(6), 2835-2845. doi: 10.1021/acs.jpcc.2c07797

Foo, K. Y., & Hameed, B. H. (2012). Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters and adsorption performance. Chemical Engineering Journal, 184, 57-65.

doi: 10.1016/j.cej.2011.12.084

Gao, F., Qin, S. H., Zang, Y. H., Gu, J. F., & Qu, J. Y. (2020). Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. New Carbon Materials, 35(2), 121-130.doi: 10.1016/S1872-5805(20)60479-6

Hall, P. J., Mirzaeian, M., Fletcher, S. I., Sillars, F. B., Rennie, A. J., Shitta-Bey, G. O., ... & Carter, R. (2010). Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science, 3(9), 1238-1251.

doi: 10.1039/C0EE00004C

Jiang, Z. H., Yang, Z., So, C. L., & Hse, C. Y. (2007). Rapid prediction of wood crystallinity in Pinus elliotii plantation wood by near-infrared spectroscopy. Journal of wood science, 53, 449-453.

Kumagai, S., Sato, M., & Tashima, D. (2013). Electrical double-layer capacitance of micro-and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochimica acta, 114, 617-626.

doi: 10.1016/j.electacta.2013.10.060

Lekakou, C., Moudam, O., Markoulidis, F., Andrews, T., Watts, J. F., & Reed, G. T. (2011). Carbon-based fibrous EDLC capacitors and supercapacitors. Journal of Nanotechnology, 2011. doi: 10.1155/2011/409382

Lee, Y. J., Kim, G. P., Bang, Y., Yi, J., Seo, J. G., & Song, I. K. (2014). Activated carbon aerogel containing graphene as electrode material for supercapacitor. Materials Research Bulletin, 50, 240-245.doi: 10.1016/j.materresbull.2013.11.021 doi: 10.4172/2157-7048.1000248

Liu, R., Yang, J., Liu, R., Tang, Y., Huang, L., & Shuai, Q. (2022). Effects of Nanopore Size on the Adsorption of Sulfamerazine from Aqueous Solution by β-Ketoenamine Covalent Organic Frameworks. ACS Applied Nano Materials, 5(12), 17851-17858. doi: org/10.1021/acsanm.2c03806

Mahmoud, S. H., Gan, T. Y., & Zhu, D. Z. (2023). Impacts of climate change and climate variability on water resources and drought in an arid region and possible resiliency and adaptation measures against climate warming. Climate Dynamics, 1-27. doi: 10.1007/s00382-023-06795-7

Masthura, E., & Abdul, H. D. (2018). Effects of activation temperature on characteristics and microstructure of coconut shell-based activated carbon. Eurasian J. Anal. Chem, 4(13), 384-390 doi:10.1039/C000417K

Nankya, R., Opar, D. O., Kim, M. J., Paek, S. M., & Jung, H. (2020). Synergetic effect of nitrogen and sulfur co-doping in mesoporous graphene for enhanced energy storage properties in supercapacitors and lithium-ion batteries. Journal of Solid State Chemistry, 289, 121451. doi:10.1016/j.jssc.2020.121451

Ozoemena, K. I., & Chen, S. (Eds.). (2016). Nanomaterials in advanced batteries and supercapacitors (p. 423). Switzerland: Springer. doi: 10.1007/978-3-319-26082-2

Rippel, T. M., Mooring, E. Q., Tomasula, J., & Wimp, G. M. (2020). Habitat edge effects decrease litter accumulation and increase litter decomposition in coastal salt marshes. Landscape Ecology, 35, 2179-2190. doi: 10.1007/s10980-020-01108-3

Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental science & technology, 44(2), 827-833. doi: 10.1021/es902266r

Sahu, A., Sen, S., & Mishra, S. C. (2023). A comparative study on characterizations of biomass derived activated carbons prepared by both normal and inert atmospheric heating conditions. Journal of the Indian Chemical Society, 100(4), 100943.

doi: 10.1016/j.jics.2023.100943

Sammed, K. A., Farid, A., Mustafa, S., Kumar, A., Tabish, M., Khan, A. A., & Zhao, W. (2023). Developing next-generation supercapacitor electrodes by coordination chemistry-based advanced functional carbon nanostructures: Progress, Current challenges and prospects. Fuel Processing Technology, 250, 107896. doi: 10.1016/j.fuproc.2023.107896

ván, B., Juan, P., Luciana, A., Morales, J. M., & Thomas, K. (2023). Microclimate and species composition shape the contribution of fuel moisture to positive fire-vegetation feedback. Agricultural and Forest Meteorology, 330, 109289. doi: 10.1016/j.agrformet.2022.109289 doi: 10.1002/adma.201100984

Yakout, S. M., & El-Deen, G. S. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian journal of chemistry, 9, S1155-S1162.

doi: 10.1016/j.arabjc.2011.12.002

Yang, X., He, H., Lv, T., & Qiu, J. (2023). Fabrication of biomass-based functional carbon materials for energy conversion and storage. Materials Science and Engineering: R: Reports, 154, 100736.

doi: 10.1016/j.mser.2023.100736

Zhai, Y., Dou, Y., Zhao, D., Fulvio, P. F., Mayes, R. T., & Dai, S. (2011). Carbon materials for chemical capacitive energy storage. Advanced materials, 23(42), 4828-4850.

Zhang, J., Jin, X., & Yang, C. (2022). Efficient removal of organic pollutants in waste sulfuric acid by an advanced oxidation process using coconut shell-derived biochar to produce qualified poly aluminium sulfate. Separation and Purification Technology, 293, 121057. doi: 10.1016/j.seppur.2022.121057

Zhang, L. L., Zhou, R., & Zhao, X. S. (2010). Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 20(29), 5983-5992.

Zhang, Y., Zhang, Y., Lian, X., Zheng, Z., Zhao, G., Zhang, T., ... & Piao, S. (2023). Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. National Science Review, nwad108. doi: 10.1093/nsr/nwad108