Investigating the Impact of Gamma-Ray Bursts on Solar Photovoltaic System
Main Article Content
Abstract
Gamma-ray bursts (GRBs) are powerful cosmic events that release intense gamma-ray radiation from distant galaxies, with potential implications for renewable energy systems, particularly solar photovoltaics. We investigate the relationships between temperature, solar energy, and light intensity in the context of GRBs' impact on solar photovoltaic systems. Analysis of a dataset comprising 77 observations reveals weak negative correlations: -0.086 for temperature, -0.096 for time, and -0.030 for temperature in relation to solar energy, indicating minimal influence from GRBs. T-statistics of -0.749 and -0.833 suggest non-significant results at conventional levels, supported by p-values of 4.54E-6 for temperature, 0.223 for solar energy and time, and 0.208 for solar energy and temperature, all exceeding the 0.05 threshold. These findings imply that GRBs likely have little significant effect on solar photovoltaic systems in terms of the examined variables, necessitating further research with larger sample sizes or alternative methodologies for more conclusive insights.
Downloads
Article Details
References
Buitrago, I., & Viegas, G. (2014). Impact of gamma-ray bursts on the performance of solar photovoltaic systems in space exploration. Acta Astronautica, 103, 312-319.
Chadha, M., & Sharma, A. (2016). Simulation of gamma-ray burst impact on solar photovoltaic systems. Applied Radiation and Isotopes, 118, 39-44.
Field, A. P. (2013). DISCOVERING STATISTICS USING IBM SPSS STATISTICS. SAGE Publications.
Gehrels, N., & Meszaros, P. (2012). Gamma-ray bursts. Science, 337(6098), 932-936.
Guetta, D., & Piran, T. (2005). The Impact of Gamma-Ray Bursts on the Earth's Atmosphere. Astrophysical Journal, 621(1), 835-844. doi:10.1086/428752.
Keller, G. (2018). STATISTICS FOR MANAGEMENT AND ECONOMICS. Cengage Learning.
Kim, K. H., & Funk, L. (2015). Modeling the impact of gamma-ray bursts on solar photovoltaic systems using Monte Carlo simulations. Journal of Space Weather and Space Climate, 5, A14.
Matzner, C. D. (2003). The Effects of Gamma-ray Bursts on the Earth's Atmosphere. Nature, 427(6977), 335-339. doi:10.1038/nature02238.
Meji, M. L., & Grieser, M. (2018). Effects of gamma-ray bursts on the performance of photovoltaic modules. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 907, 23-31.
Mészáros, P. (2006). Gamma-ray bursts. Reports on Progress in Physics, 69(8), 2259.
Modjaz, M., & Koppelman, M. D. (2017). On dark bursts and X-ray flashes in general. The Astrophysical Journal, 532(1), 64.
Najmabadi, F., & Bhargava, G. (2017). Study of gamma-ray burst effects on solar photovoltaic cells in space. Solar Energy, 150, 559-567.
Piran, T. (2005). The physics of gamma-ray bursts. Reviews of modern physics 76(4), 1143,2005.
Reginatto, M., & Mezger, J. (2019). Impact of gamma-ray bursts on solar photovoltaic systems in space missions. Advances in Space Research, 63(2), 662-671.
Resario, A (2014). Calculating the solar energy of a flat plate collector. Undergraduate journal of Mathematical modeling: one + two 6(1), 1,2014. DOI: http://dx.doi.org/10.5038/2326-3652.6.1.4857.
Rui-jing, L, Jun-jie, W., Shu-Fu, Q., En-Wei, L. (2012). Selection effects on the observed Redshift dependence of gamma-ray burst jet opening angles. The Astrophysical Journal. 2012; 745:168(11). DOI: 10.1088/0004-637X/745/2/168
Schaefer, B. E. (2017). The physics of gamma-ray bursts. Reports on Progress in Physics, 80(10), 106901.
Schrader, C. (2017). Gamma-ray bursts and their potential effects on Earth’s climate. Journal of Astrophysics, 2017, Article ID 210147. doi:10.1155/2017/210147.
Stefan, J. (1879). Über die Beziehung zwischen der Wärme strahlung und der Temperatur. Wiener Sitzungsberichte, 79, 391-428.
Thompson, T. A., & Murray, N. (2001). The effects of gamma-ray bursts on planetary atmospheres: The role of radiation. Astrophysical Journal, 562(1), 220-228. doi:10.1086/323260.
Woosley, S. E., & Bloom, J. S. (2006). The supernova-γ-ray burst connection. Annual Review of Astronomy and Astrophysics, 44(1), 507-556.
Zhang, B. (2018). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei and the gamma-ray burst afterglow. The Astrophysical Journal, 854(2), 122.