Structural, Infra-red and Morphological Effect of Sm3+ Doped Barium Titanate Nanoparticles

Authors

  • Fatima Musa Lariski Mrs
  • Tasiu Zangina
  • Chifu E. Ndikilar
  • J. Mohammed

Abstract

Barium titanate (BaTiO3) ceramics, prepared by the sol-gel method, were investigated considering the influence of the doped samarium concentration. Undoped BaTiO3 and doped BaTi1-xSmxO3 (x = 0.0, 0.1, 0.2)  were characterized by using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectroscopy (EDX). XRD results shows the replacement of Ti4+ ions (0.605 Å) by the bigger Sm3+ ions (0.958 Å) leading to the variation in cell parameter demonstrating the increase in lattice parameter with the increase of Sm content. The calculated tolerance value was 0.952 considering Sm-at B-site for BaTi1-xSmxO3 indicating a cubic perovskite structure, a strong absorption peak for pure BT powder is observed around 493 cm-1, signifying the stretching of normal vibration for Ti-O octahedron. Another absorption peaks for the same mode are observed at 503 and 512 cm-1 for x = 0.1 and 0.2 respectively. FESEM show that the particles follow a normal distribution, with average particle sizes of 73.5 nm and 70.5 nm for x = 0.0 and x = 0.2 respectively, that is to say that the particle size decreases slightly with Sm concentrations, EDX spectra confirms the presence of Ba, Ti, O and dopant in our prepared sample of the same constituents.

Downloads

Download data is not yet available.

References

Adak, M. K., Mondal, D., Mondal, S., Kar, S., Mahato, S. J., Mahato, U., Gorai, U. R., Ghorai, U. K., & Dhak, D. (2020). Materials Science & Engineering B Ferroelectric and photocatalytic behavior of Mn- and Ce-doped BaTiO 3 nanoceramics prepared by chemical route. Materials Science & Engineering B, 262(September), 114800. https://doi.org/10.1016/j.mseb.2020.114800

Alam, M. A., Zuga, L., & Pecht, M. G. (2012). CERAMICS Economics of rare earth elements in ceramic capacitors.

Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method : Synthesis and Application. 2021.

Cai, W., Fu, C. L., Gao, J. C., & Zhao, C. X. (2011). Dielectric properties and microstructure of Mg doped barium titanate ceramics. 110(3), 181–185. https://doi.org/10.1179/1743676110Y.0000000019

Dutta, D. P., Ballal, A., Nuwad, J., & Tyagi, A. K. (2014). Optical properties of sonochemically synthesized rare earth ions doped BaTiO 3 nanophosphors : Probable candidate for white light emission. Journal of Luminescence, 148, 230–237. https://doi.org/10.1016/j.jlumin.2013.11.071

Er, B., Ismail, F. A., Aina, R., Osman, M., Idris, M. S., Taking, S., Azhar, Z., & Jamal, Z. (2017). Dielectric and microstructural properties of. 01051, 5–9. https://doi.org/10.1051/epjconf/201716201051

Hai, C., Inukai, K., Takahashi, Y., Izu, N., Akamatsu, T., Itoh, T., & Shin, W. (2014). Surfactant-assisted synthesis of mono-dispersed cubic BaTiO 3 nanoparticles. Materials Research Bulletin, 57, 103–109. https://doi.org/10.1016/j.materresbull.2014.05.036

Hamad, M. A. (2020). Characterization of excessive Sm 3 þ containing barium titanate prepared by tartrate precursor method. Journal of Materials Research and Technology, 9(6), 15214–15221. https://doi.org/10.1016/j.jmrt.2020.10.015

Li, Y., Dun, W., Yan, S., Zuo, G., & Qu, Y. (2017). Effect of samarium and lanthanum co-dopant on the microstructure and dielectric properties of ­. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-017-6966-7

Li, Z., Zhang, H., Zou, X., & Bergman, B. (2005). Synthesis of Sm-doped BaTiO 3 ceramics and characterization of a secondary phase. 116, 34–39. https://doi.org/10.1016/j.mseb.2004.09.017

Oliveira, M. A., M, J. C., Hernandes, A. C., Guo, R., Bhalla, S., Guerra, J. D. S., M, J. C., & Hernandes, A. C. (2019). Structural and microstructural analyses on Sm- modified BaTiO 3 obtained from the Pechini ’ s method. Ferroelectrics, 533(1), 99–107. https://doi.org/10.1080/00150193.2018.1470819

Paunovic, V., Mitic, V. V, & Kocic, L. (2016). Dielectric characteristics of donor-acceptor modi fi ed BaTiO 3 ceramics.https://doi.org/10.1016/j.ceramint.2016.04.087

Properties, C. E. (2010). Influence of Rare-Earth Dopants on Barium Titanate Ceramics Microstructure and Corresponding Electrical Properties. 137(25042), 132–137. https://doi.org/10.1111/j.1551-2916.2009.03309.x

Smith, M. B., Page, K., Siegrist, T., Redmond, P. L., Walter, E. C., Seshadri, R., Brus, L. E., Steigerwald, M. L., Barbara, S., Laboratories, B., Mountain, A. V, & Hill, M. (2008). Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO 3. 14, 6955–6963.

Sur, Y. T., Itomi, A. H., Crymgeour, I. S., & Andall, C. A. R. (2001). Site Occupancy of Rare-Earth Cations in BaTiO 3. 40(1), 255–258.

Taylor, P., & Lin, Z. (2012). Integrated Ferroelectrics : An Effect of Samarium on the Microstructure , Dielectric and Ferroelectric Properties of Barium Titanate Ceramics Effect of Samarium on the Microstructure , Dielectric and Ferroelectric Properties of Barium. April 2013, 37–41. https://doi.org/10.1080/10584587.2012.741466

Vijatovi, M. M., Grigalaitis, R., Ilic, N., & Bobi, J. D. (2017). Interdependence between structure and electrical characteristics in Sm-doped barium titanate. 724. https://doi.org/10.1016/j.jallcom.2017.07.099

You, A., Be, M. A. Y., & In, I. (2020). Dielectric and structural analysis of hexagonal and tetragonal phase BaTiO 3 Dielectric and Structural Analysis of Hexagonal and. 020038(January), 1–8.

Zhang, B., Lou, X., Zheng, K., Xie, X., Shi, P., Guo, M., Zhu, X., Gao, Y., Liu, Q., & Kang, R. (2020). Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO 3 ceramics. Ceramics International, July. https://doi.org/10.1016/j.ceramint.2020.08.226

Downloads

Published

2023-07-03

How to Cite

Structural, Infra-red and Morphological Effect of Sm3+ Doped Barium Titanate Nanoparticles. (2023). Nigerian Journal of Physics, 32(1), 1-8. https://njp.nipngr.org/index.php/njp/article/view/4