Structural, Infra-red and Morphological Effect of Sm3+ Doped Barium Titanate Nanoparticles

Main Article Content

Fatima Musa Lariski
Tasiu Zangina
Chifu E. Ndikilar
J. Mohammed

Abstract

Barium titanate (BaTiO3) ceramics, prepared by the sol-gel method, were investigated considering the influence of the doped samarium concentration. Undoped BaTiO3 and doped BaTi1-xSmxO3 (x = 0.0, 0.1, 0.2)  were characterized by using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectroscopy (EDX). XRD results shows the replacement of Ti4+ ions (0.605 Å) by the bigger Sm3+ ions (0.958 Å) leading to the variation in cell parameter demonstrating the increase in lattice parameter with the increase of Sm content. The calculated tolerance value was 0.952 considering Sm-at B-site for BaTi1-xSmxO3 indicating a cubic perovskite structure, a strong absorption peak for pure BT powder is observed around 493 cm-1, signifying the stretching of normal vibration for Ti-O octahedron. Another absorption peaks for the same mode are observed at 503 and 512 cm-1 for x = 0.1 and 0.2 respectively. FESEM show that the particles follow a normal distribution, with average particle sizes of 73.5 nm and 70.5 nm for x = 0.0 and x = 0.2 respectively, that is to say that the particle size decreases slightly with Sm concentrations, EDX spectra confirms the presence of Ba, Ti, O and dopant in our prepared sample of the same constituents.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lariski, F. M., Zangina, T., Ndikilar, C. E., & Mohammed, J. (2023). Structural, Infra-red and Morphological Effect of Sm3+ Doped Barium Titanate Nanoparticles. Nigerian Journal of Physics, 32(1), 1–8. Retrieved from https://njp.nipngr.org/index.php/njp/article/view/4
Section
Articles

References

Adak, M. K., Mondal, D., Mondal, S., Kar, S., Mahato, S. J., Mahato, U., Gorai, U. R., Ghorai, U. K., & Dhak, D. (2020). Materials Science & Engineering B Ferroelectric and photocatalytic behavior of Mn- and Ce-doped BaTiO 3 nanoceramics prepared by chemical route. Materials Science & Engineering B, 262(September), 114800. https://doi.org/10.1016/j.mseb.2020.114800

Alam, M. A., Zuga, L., & Pecht, M. G. (2012). CERAMICS Economics of rare earth elements in ceramic capacitors.

Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method : Synthesis and Application. 2021.

Cai, W., Fu, C. L., Gao, J. C., & Zhao, C. X. (2011). Dielectric properties and microstructure of Mg doped barium titanate ceramics. 110(3), 181–185. https://doi.org/10.1179/1743676110Y.0000000019

Dutta, D. P., Ballal, A., Nuwad, J., & Tyagi, A. K. (2014). Optical properties of sonochemically synthesized rare earth ions doped BaTiO 3 nanophosphors : Probable candidate for white light emission. Journal of Luminescence, 148, 230–237. https://doi.org/10.1016/j.jlumin.2013.11.071

Er, B., Ismail, F. A., Aina, R., Osman, M., Idris, M. S., Taking, S., Azhar, Z., & Jamal, Z. (2017). Dielectric and microstructural properties of. 01051, 5–9. https://doi.org/10.1051/epjconf/201716201051

Hai, C., Inukai, K., Takahashi, Y., Izu, N., Akamatsu, T., Itoh, T., & Shin, W. (2014). Surfactant-assisted synthesis of mono-dispersed cubic BaTiO 3 nanoparticles. Materials Research Bulletin, 57, 103–109. https://doi.org/10.1016/j.materresbull.2014.05.036

Hamad, M. A. (2020). Characterization of excessive Sm 3 þ containing barium titanate prepared by tartrate precursor method. Journal of Materials Research and Technology, 9(6), 15214–15221. https://doi.org/10.1016/j.jmrt.2020.10.015

Li, Y., Dun, W., Yan, S., Zuo, G., & Qu, Y. (2017). Effect of samarium and lanthanum co-dopant on the microstructure and dielectric properties of ­. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-017-6966-7

Li, Z., Zhang, H., Zou, X., & Bergman, B. (2005). Synthesis of Sm-doped BaTiO 3 ceramics and characterization of a secondary phase. 116, 34–39. https://doi.org/10.1016/j.mseb.2004.09.017

Oliveira, M. A., M, J. C., Hernandes, A. C., Guo, R., Bhalla, S., Guerra, J. D. S., M, J. C., & Hernandes, A. C. (2019). Structural and microstructural analyses on Sm- modified BaTiO 3 obtained from the Pechini ’ s method. Ferroelectrics, 533(1), 99–107. https://doi.org/10.1080/00150193.2018.1470819

Paunovic, V., Mitic, V. V, & Kocic, L. (2016). Dielectric characteristics of donor-acceptor modi fi ed BaTiO 3 ceramics.https://doi.org/10.1016/j.ceramint.2016.04.087

Properties, C. E. (2010). Influence of Rare-Earth Dopants on Barium Titanate Ceramics Microstructure and Corresponding Electrical Properties. 137(25042), 132–137. https://doi.org/10.1111/j.1551-2916.2009.03309.x

Smith, M. B., Page, K., Siegrist, T., Redmond, P. L., Walter, E. C., Seshadri, R., Brus, L. E., Steigerwald, M. L., Barbara, S., Laboratories, B., Mountain, A. V, & Hill, M. (2008). Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO 3. 14, 6955–6963.

Sur, Y. T., Itomi, A. H., Crymgeour, I. S., & Andall, C. A. R. (2001). Site Occupancy of Rare-Earth Cations in BaTiO 3. 40(1), 255–258.

Taylor, P., & Lin, Z. (2012). Integrated Ferroelectrics : An Effect of Samarium on the Microstructure , Dielectric and Ferroelectric Properties of Barium Titanate Ceramics Effect of Samarium on the Microstructure , Dielectric and Ferroelectric Properties of Barium. April 2013, 37–41. https://doi.org/10.1080/10584587.2012.741466

Vijatovi, M. M., Grigalaitis, R., Ilic, N., & Bobi, J. D. (2017). Interdependence between structure and electrical characteristics in Sm-doped barium titanate. 724. https://doi.org/10.1016/j.jallcom.2017.07.099

You, A., Be, M. A. Y., & In, I. (2020). Dielectric and structural analysis of hexagonal and tetragonal phase BaTiO 3 Dielectric and Structural Analysis of Hexagonal and. 020038(January), 1–8.

Zhang, B., Lou, X., Zheng, K., Xie, X., Shi, P., Guo, M., Zhu, X., Gao, Y., Liu, Q., & Kang, R. (2020). Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO 3 ceramics. Ceramics International, July. https://doi.org/10.1016/j.ceramint.2020.08.226