Advancements in MoS2-based Nanocomposites for Photothermal and Chemotherapy Applications: A Mini-Review
Authors
-
Ismaila Taiwo Bello
Ladoke Akintola University of Technology
- Hope Kofoworola Adewumi
- Paul Sola Ayanlola
- Abraham Adewale Aremu
- Emmanuel Abiodun Oni
- Dauda Biodun Amuda
Keywords:
Nanocomposites, MoS2, Photothermal, Photodynamic, ChemotherapyAbstract
Nanomaterials are recognized for their excellent properties and can be used in all areas of life. Nanomaterial-based drug delivery systems are increasingly promising and useful as tools in cancer therapy. Molybdenum sulfide (MoS2), a 2D material, is extensively studied today due to its exceptional characteristics and wide range of applications. Due to its unique properties and versatility for numerous applications, MoS2 has garnered considerable attention from researchers worldwide. MoS2 has been extensively explored for biomedical applications due to its excellent photothermal conversion ability. Multiple research papers have explored the advancements and applications of MoS2 materials, but this article aims to provide an overview of its photothermal and chemotherapy applications.
Alimohammadi, F., Sharifian, M., Attanayake, N. H., Thenuwara, A. C., Gogotsi, Y., Anasori, B., & Strongin, D. R. (2018). Antimicrobial Properties of 2D MnO2 and MoS2 Nanomaterials Vertically Aligned on Graphene Materials and Ti3C2 MXene. Langmuir, 34(24), 7192–7200. https://doi.org/10.1021/acs.langmuir.8b00262
Ariyasu, S., Mu, J., Zhang, X., Huang, Y., Yeow, E. K. L., Zhang, H., & Xing, B. (2017). Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS2-Based Nanocomposite. Bioconjugate Chemistry, 28(4), 1059–1067. https://doi.org/10.1021/acs.bioconjchem.6b00741
Arul, N. S., & Nithya, V. D. (2016). Molybdenum disulfide quantum dots: Synthesis and applications. RSC Advances, 6(70), 65670–65682. https://doi.org/10.1039/c6ra09060e
Ataca, C., Topsakal, M., Aktürk, E., & Ciraci, S. (2011). A comparative study of lattice dynamics of three- and two-dimensional MoS2. Journal of Physical Chemistry C, 115(33), 16354–16361. https://doi.org/10.1021/jp205116x
Bazaka, K., Levchenko, I., Lim, J. W. M., Baranov, O., Corbella, C., Xu, S., & Keidar, M. (2019). MoS 2 -based nanostructures: Synthesis and applications in medicine. Journal of Physics D: Applied Physics, 51(18). https://doi.org/10.1088/1361-6463/ab03b3
Bello, I. T., Oladipo, O. A., Adedokun, O., & Dhlamini, M. S. (2020a). Recent advances on the preparation and electrochemical analysis of MoS 2 -based materials for supercapacitor applications : A mini-review. Materials Today Communications, 25(September), 101664. https://doi.org/10.1016/j.mtcomm.2020.101664
Bello, I. T., Oladipo, O. A., Adedokun, O., & Dhlamini, M. S. (2020b). Recent advances on the preparation and electrochemical analysis of MoS 2 -based materials for supercapacitor applications : A mini-review. Materials Today Communications, 25(September), 101664. https://doi.org/10.1016/j.mtcomm.2020.101664
Bello, I. T., Tsotetsi, D., Shaku, B., Adedokun, O., Chen, D., & Dhlamini, M. S. (2024). Advances in MoS2-based nanomaterials for supercapacitors, batteries and photovoltaics applications. In Journal of Energy Storage (Vol. 103, Issue PB, p. 114355). Elsevier Ltd. https://doi.org/10.1016/j.est.2024.114355
Benavente, E., Santa Ana, M. A., Mendizábal, F., & González, G. (2002). Intercalation chemistry of molybdenum disulfide. Coordination Chemistry Reviews, 224(1–2), 87–109. https://doi.org/10.1016/S0010-8545(01)00392-7
Cai, Y., Zhou, H., Zhang, G., & Zhang, Y. W. (2016). Modulating Carrier Density and Transport Properties of MoS2 by Organic Molecular Doping and Defect Engineering. Chemistry of Materials, 28(23), 8611–8621. https://doi.org/10.1021/acs.chemmater.6b03539
Cao, F., Ju, E., Zhang, Y., Wang, Z., Liu, C., Li, W., Huang, Y., Dong, K., Ren, J., & Qu, X. (2017). An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS2. ACS Nano, 11(5), 4651–4659. https://doi.org/10.1021/acsnano.7b00343
Cao, W., Yue, L., Zhang, Y., & Wang, Z. (2022). Photodynamic chitosan functionalized MoS2 nanocomposite with enhanced and broad-spectrum antibacterial activity. Carbohydrate Polymers, 277(September 2021), 118808. https://doi.org/10.1016/j.carbpol.2021.118808
Chen, H. J., Huang, J., Lei, X. L., Wu, M. S., Liu, G., Ouyang, C. Y., & Xu, B. (2013). Adsorption and diffusion of lithium on MoS2 monolayer: The role of strain and concentration. International Journal of Electrochemical Science, 8(2), 2196–2203. https://doi.org/10.1016/s1452-3981(23)14301-x
Chen, J., Li, X., Liu, X., Yan, H., Xie, Z., Sheng, Z., Gong, X., Wang, L., Liu, X., Zhang, P., Zheng, H., Song, L., & Liu, C. (2018). Hybrid MoSe2-indocyanine green nanosheets as a highly efficient phototheranostic agent for photoacoustic imaging guided photothermal cancer therapy. Biomaterials Science, 6(6), 1503–1516. https://doi.org/10.1039/c8bm00104a
Chen, W., Zeng, K., Liu, H., Ouyang, J., Wang, L., Liu, Y., Wang, H., Deng, L., & Liu, Y. N. (2017). Cell Membrane Camouflaged Hollow Prussian Blue Nanoparticles for Synergistic Photothermal-/Chemotherapy of Cancer. Advanced Functional Materials, 27(11). https://doi.org/10.1002/adfm.201605795
Chianelli, R. R., Siadati, M. H., De la Rosa, M. P., Berhault, G., Wilcoxon, J. P., Bearden, R., & Abrams, B. L. (2006). Catalytic properties of single layers of transition metal sulfide catalytic materials. Catalysis Reviews - Science and Engineering, 48(1), 1–41. https://doi.org/10.1080/01614940500439776
Chikukwa, E., Meyer, E., Mbese, J., & Zingwe, N. (2021). Colloidal synthesis and characterization of molybdenum chalcogenide quantum dots using a two‐source precursor pathway for photovoltaic applications. Molecules, 26(14). https://doi.org/10.3390/molecules26144191
Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R. J., Shvets, I. V., Arora, S. K., Stanton, G., Kim, H. Y., Lee, K., Kim, G. T., Duesberg, G. S., Hallam, T., Boland, J. J., … Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568–571. https://doi.org/10.1126/science.1194975
Dong, K., Liu, Z., Li, Z., Ren, J., & Qu, X. (2013). Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Advanced Materials, 25(32), 4452–4458. https://doi.org/10.1002/adma.201301232
Duan, S., Yang, Y., Zhang, C., Zhao, N., & Xu, F. J. (2017). NIR-Responsive Polycationic Gatekeeper-Cloaked Hetero-Nanoparticles for Multimodal Imaging-Guided Triple-Combination Therapy of Cancer. Small, 13(9), 1–10. https://doi.org/10.1002/smll.201603133
Gao, W., Wang, M., Ran, C., & Li, L. (2015). Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties. Chemical Communications, 51(9), 1709–1712. https://doi.org/10.1039/c4cc08984g
Gu, W., Yan, Y., Zhang, C., Ding, C., & Xian, Y. (2016). One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Applied Materials and Interfaces, 8(18), 11272–11279. https://doi.org/10.1021/acsami.6b01166
Guo, J., Yang, B., Ma, Q., Fometu, S. S., & Wu, G. (2021). Photothermal regenerated fibers with enhanced toughness: Silk fibroin/MoS2 nanoparticles. Polymers, 13(22). https://doi.org/10.3390/polym13223937
Guo, Y., & Li, J. (2020). MoS2 quantum dots: synthesis, properties and biological applications. Materials Science and Engineering C, 109(September 2018), 2–13. https://doi.org/10.1016/j.msec.2019.110511
Hao, J., Li, Z., Liang, Y., Tang, T., Yi, X., Ou, R., Jie, Q., Zhang, B. Y., Cheng, Y. F., Feng, W. L., & Ou, J. Z. (2025). Recent progress in two-dimensional materials : From emerging structures and synthesis approaches to electronic and sensing applications. Chemical Engineering Journal, 520(July), 1–31. https://doi.org/https://doi.org/10.1016/j.cej.2025.166133
He, Z., & Que, W. (2016). Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 3, 23–56. https://doi.org/10.1016/j.apmt.2016.02.001
Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011). Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 7(14), 1876–1902. https://doi.org/10.1002/smll.201002009
Huang, X., Zeng, Z., & Zhang, H. (2013). Metal dichalcogenide nanosheets: Preparation, properties and applications. Chemical Society Reviews, 42(5), 1934–1946. https://doi.org/10.1039/c2cs35387c
Jaleel UC, J. R., R, M., Devi K R, S., Pinheiro, D., & Mohan, M. K. (2022). Structural, Morphological and Optical Properties of MoS2-Based Materials for Photocatalytic Degradation of Organic Dye. Photochem, 2(3), 628–650. https://doi.org/10.3390/photochem2030042
Jiang, H., Du, Y., Chen, L., Qian, M., Yang, Y., Huo, T., Yan, X., Ye, T., Han, B., Wang, Y., & Huang, R. (2020). Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS2 nanoflowers. International Journal of Pharmaceutics, 586(June), 119606. https://doi.org/10.1016/j.ijpharm.2020.119606
Kabel, J., Sharma, S., Acharya, A., Zhang, D., & Yap, Y. K. (2021). Molybdenum Disulfide Quantum Dots: Properties, Synthesis, and Applications. C, 7(2), 45. https://doi.org/10.3390/c7020045
Lai, Y., Fakhri, A., & Janani, B. J. (2022). Synergistic activities of silver indium sulfide/nickel molybdenum sulfide nanostructures anchored on clay mineral for light-driven bactericidal performance, and detection of uric acid from gout patient serum. Journal of Photochemistry and Photobiology B: Biology, 234(March), 112526. https://doi.org/10.1016/j.jphotobiol.2022.112526
Lee, J., Kim, J., & Kim, W. J. (2016). Photothermally Controllable Cytosolic Drug Delivery Based on Core-Shell MoS2-Porous Silica Nanoplates. Chemistry of Materials, 28(17), 6417–6424. https://doi.org/10.1021/acs.chemmater.6b02944
Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. Te, Chang, K. Di, Yu, Y. C., Wang, J. T. W., Chang, C. S., Li, L. J., & Lin, T. W. (2012). Synthesis of large-area MoS 2 atomic layers with chemical vapor deposition. Advanced Materials, 24(17), 2320–2325. https://doi.org/10.1002/adma.201104798
Lei, Y., Ding, M., Cheng, S., Huo, D., Zhang, F., Liu, T., & Zhang, Y. (2023). Magnetically recyclable 1 T-2 H MoS2/Fe3O4 hybrids with photothermal-promoted photo-Fenton catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676(PA), 132117. https://doi.org/10.1016/j.colsurfa.2023.132117
Li, N., Zhang, W., Khan, M., Lin, L., & Lin, J. M. (2018). MoS2-LA-PEI nanocomposite carrier for real-time imaging of ATP metabolism in glioma stem cells co-cultured with endothelial cells on a microfluidic system. Biosensors and Bioelectronics, 99(July 2017), 142–149. https://doi.org/10.1016/j.bios.2017.07.046
Li, P., Liu, L., Lu, Q., Yang, S., Yang, L., Cheng, Y., Wang, Y. D., Wang, S. Y., Song, Y. L., Tan, F., & Li, N. (2019). Ultrasmall MoS 2 Nanodots-Doped Biodegradable SiO 2 Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b18924
Li, P. P., Liu, X. P., Mao, C. J., Jin, B. K., & Zhu, J. J. (2019). Photoelectrochemical DNA biosensor based on g-C 3 N 4 /MoS 2 2D/2D heterojunction electrode matrix and co-sensitization amplification with CdSe QDs for the sensitive detection of ssDNA. Analytica Chimica Acta, 1048, 42–49. https://doi.org/10.1016/j.aca.2018.09.063
Lin, Y. C., Dumcenco, D. O., Huang, Y. S., & Suenaga, K. (2014). Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS 2. Nature Nanotechnology, 9(5), 391–396. https://doi.org/10.1038/nnano.2014.64
Liu, C., Chen, J., Zhu, Y., Gong, X., Zheng, R., Chen, N., Chen, D., Yan, H., Zhang, P., Zheng, H., Sheng, Z., & Song, L. (2018). Highly Sensitive MoS2–Indocyanine Green Hybrid for Photoacoustic Imaging of Orthotopic Brain Glioma at Deep Site. Nano-Micro Letters, 10(3), 1–12. https://doi.org/10.1007/s40820-018-0202-8
Liu, J., Zhang, K., & Gao, Z. (2022). Synergistic effect of Ag2S nanoparticles and spiny MoS2 anchored on palygorskite for boosting light-driven antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 649(April), 129554. https://doi.org/10.1016/j.colsurfa.2022.129554
Liu, J., Zheng, J., Nie, H., Chen, H., Li, B., & Jia, L. (2020). Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chemical Engineering Journal, 381(August 2019), 122541. https://doi.org/10.1016/j.cej.2019.122541
Liu, L., Jiang, H., Dong, J., Zhang, W., Dang, G., Yang, M., Li, Y., Chen, H., Ji, H., & Dong, L. (2020). PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids and Surfaces B: Biointerfaces, 185(August 2019), 110590. https://doi.org/10.1016/j.colsurfb.2019.110590
Liu, T., Wang, C., Cui, W., Gong, H., Liang, C., Shi, X., Li, Z., Sun, B., & Liu, Z. (2014). Combined photothermal and photodynamic therapy delivered by PEGylated MoS2nanosheets. Nanoscale, 6(19), 11219–11225. https://doi.org/10.1039/c4nr03753g
Lu, J., Chen, M., Dong, L., Cai, L., Zhao, M., Wang, Q., & Li, J. (2020). Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications. Colloids and Surfaces B: Biointerfaces, 194(March). https://doi.org/10.1016/j.colsurfb.2020.111162
Mitchell, P. C. H., Outteridge, T., Kloska, K., McMahon, S., Epshteyn, Y., Sebenik (Retired), R. F., Burkin (Retired), A. R., Dorfler, R. R., Laferty (Retired), J. M., Leichtfried, G., Meyer‐Grünow, H., & Vukasovich (deceased), M. S. (2020). Molybdenum and Molybdenum Compounds. Ullmann’s Encyclopedia of Industrial Chemistry, 1–63. https://doi.org/10.1002/14356007.a16_655.pub2
Mohammad-Andashti, P., Ramezani, Z., Zare-Shahabadi, V., & Torabi, P. (2022). Rapid and green synthesis of highly luminescent MoS2 quantum dots via microwave exfoliation of MoS2 powder and its application as a fluorescence probe for cortisol detection in human saliva. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647(April), 129048. https://doi.org/10.1016/j.colsurfa.2022.129048
Mou, J., Chen, Y., Ma, M., Zhang, K., Wei, C., Chen, H., & Shi, J. (2015). Facile synthesis of liposome/Cu2−x S-based nanocomposite for multimodal imaging and photothermal therapy. Science China Materials, 58(4), 294–301. https://doi.org/10.1007/s40843-015-0044-3
Mouloua, D., Kotbi, A., Deokar, G., Kaja, K., El Marssi, M., El Khakani, M. A., & Jouiad, M. (2021). Recent progress in the synthesis of MoS2 thin films for sensing, photovoltaic and plasmonic applications: A review. Materials, 14(12). https://doi.org/10.3390/ma14123283
Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V, & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films Supplementary. Science, 5(1), 1–12. https://doi.org/10.1126/science.aab1343
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0502848102
Pallikkarathodi Mani, N., Ganiga, M., & Yriac, J. (2018). MoS2 nanohybrid as a fluorescence sensor for highly selective detection of dopamine. Analyst, 143(7), 1691–1698. https://doi.org/10.1039/c7an01770g
Py, M. A., & Haering, R. R. (1983). STRUCTURAL DESTABILIZATION INDUCED BY LITHIUM INTERCALATION IN MoS2 AND RELATED COMPOUNDS. Canadian Journal of Physics, 61(1), 76–84. https://doi.org/10.1139/p83-013
Radhakrishnan, S., Mathew, M., & Rout, C. S. (2022). Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Materials Advances, 3(4), 1874–1904. https://doi.org/10.1039/d1ma00929j
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature Nanotechnology, 6(3), 147–150. https://doi.org/10.1038/nnano.2010.279
Rajasekar, S., Martin, E. M., Kuppusamy, S., & Vetrivel, C. (2020). Chitosan coated molybdenum sulphide nanosheet incorporated with tantalum oxide nanomaterials for improving cancer photothermal therapy. Arabian Journal of Chemistry, 13(3), 4741–4750. https://doi.org/10.1016/j.arabjc.2019.11.005
Ramakrishna Matte, H. S. S., Gomathi, A., Manna, A. K., Late, D. J., Datta, R., Pati, S. K., & Rao, C. N. R. (2010). MoS2 and WS2 analogues of graphene. Angewandte Chemie - International Edition, 49, 4059–4062. https://doi.org/10.1002/anie.201000009
Rodriguez, C. L. C., Nunes, M. A. B. S., Garcia, P. S., & Fechine, G. J. M. (2021). Molybdenum disulfide as a filler for a polymeric matrix at an ultralow content: Polystyrene case. Polymer Testing, 93(September 2020), 0–9. https://doi.org/10.1016/j.polymertesting.2020.106882
Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., & Jaiswal, A. (2019). Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress [Research-article]. ACS Applied Bio Materials, 2(7), 2738–2755. https://doi.org/10.1021/acsabm.9b00124
Saravanan, N., Ganesh, P., Pitchaimuthu, S., & Sundaramurthy, A. (2023). Nanozyme controlled photothermal heat generation on nanoceria decorated MoS2 nanoflowers for enhanced cytotoxicity in cancer chemo-photothermal therapy. Surfaces and Interfaces, 41(May), 103225. https://doi.org/10.1016/j.surfin.2023.103225
SCHONFELD, B., Moss, S. C., & Huang, J. J. (1983). Anisotropic Mean-Square Displacements (MSD) in Single Crystals of 2H- and 3R-MoS2. Acta Crystallographica Section B, 39(4), 404–407.
Song, C., Sun, Q., Qin, L., Chen, M., Li, Y., & Niu, D. (2022). Confined Construction of Ultrasmall Molybdenum Disulfide-Loaded Porous Silica Particles for Efficient Tumor Therapy. ACS Biomaterials Science and Engineering, 8(8), 3377–3386. https://doi.org/10.1021/acsbiomaterials.2c00629
Song, I., Park, C., & Choi, H. C. (2015). Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Advances, 5(10), 7495–7514. https://doi.org/10.1039/c4ra11852a
Srivastava, M., Banerjee, S., Bairagi, S., Singh, P., Kumar, B., Singh, P., Kale, R. D., Mulvihill, D. M., & Ali, S. W. (2024). Recent progress in molybdenum disulfide (MoS2) based flexible nanogenerators: An inclusive review. Chemical Engineering Journal, 480(December 2023), 147963. https://doi.org/10.1016/j.cej.2023.147963
Toth, P. S., & Velicky, M. (2017). From two-dimensional materials to their heterostructures : An electrochemist ’ s perspective. Applied Materials Today, 8, 68–103. https://doi.org/10.1016/j.apmt.2017.05.003
Tulsani, S. R., Rath, A. K., & Late, D. J. (2019). 2D-MoS2 nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Advances, 1(4), 1387–1394. https://doi.org/10.1039/c8na00272j
Wang, H., Li, X., Ge, Q., Chong, Y., & Zhang, Y. (2022). A multifunctional Fe2O3@MoS2@SDS Z-scheme nanocomposite: NIR enhanced bacterial inactivation, degradation antibiotics and inhibiting ARGs dissemination. Colloids and Surfaces B: Biointerfaces, 219(September), 112833. https://doi.org/10.1016/j.colsurfb.2022.112833
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012a). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012b). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
Wang, S., Tan, L., Liang, P., Liu, T., Wang, J., Fu, C., Yu, J., Dou, J., Li, H., & Meng, X. (2016). Layered MoS2 nanoflowers for microwave thermal therapy. Journal of Materials Chemistry B, 4(12), 2133–2141. https://doi.org/10.1039/c6tb00296j
Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene : An Emerging Electronic Material. Advanced Materials, 1–44. https://doi.org/10.1002/adma.201201482
Wilson, J. A., & Yoffe, A. D. (1969). The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73), 193–335. https://doi.org/10.1080/00018736900101307
Wu, J., Bremner, D. H., Niu, S., Wu, H., Wu, J., Wang, H., Li, H., & Zhu, L. M. (2018). Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy. Chemical Engineering Journal, 342(February), 90–102. https://doi.org/10.1016/j.cej.2018.02.052
Wu, Z., Li, B., Xue, Y., Li, J., Zhang, Y., & Gao, F. (2015). Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. Journal of Materials Chemistry A, 3(38), 19445–19454. https://doi.org/10.1039/c5ta04549e
Xu, S., Zhang, P., Heing-Becker, I., Zhang, J., Tang, P., Bej, R., Bhatia, S., Zhong, Y., & Haag, R. (2022). Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS2 nanoflakes for multidrug-resistant tumor ablation. Biomaterials, 290(October), 121844. https://doi.org/10.1016/j.biomaterials.2022.121844
Xu, Y., Yan, L., Li, X., & Xu, H. (2019). Fabrication of transition metal dichalcogenides quantum dots based on femtosecond laser ablation. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-38929-5
Yadav, V., Roy, S., Singh, P., Khan, Z., & Jaiswal, A. (2019). 2D MoS2-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small, 15(1), 1–33. https://doi.org/10.1002/smll.201803706
Yan, C., Tian, Q., & Yang, S. (2017). Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 7(60), 37887–37897. https://doi.org/10.1039/c7ra05468h
Yang, Y., Wu, J., Bremner, D. H., Niu, S., Li, Y., Zhang, X., Xie, X., & Zhu, L. M. (2020). A multifunctional nanoplatform based on MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 185(October 2019). https://doi.org/10.1016/j.colsurfb.2019.110585
Zhang, A., Li, A., Tian, W., Li, Z., Wei, C., Sun, Y., Zhao, W., Liu, M., & Liu, J. (2017). A Target-Directed Chemo-Photothermal System Based on Transferrin and Copolymer-Modified MoS2 Nanoplates with pH-Activated Drug Release. Chemistry - A European Journal, 23(47), 11346–11356. https://doi.org/10.1002/chem.201701916
Zhang, A., Li, A., Zhao, W., Yan, G., Liu, B., Liu, M., Li, M., Huo, B., & Liu, J. (2018). An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS2 nanodots for dually controlled drug release. Chemical Engineering Journal, 342(February), 120–132. https://doi.org/10.1016/j.cej.2018.02.081
Zhang, G., Liu, H., Qu, J., & Li, J. (2016). Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy and Environmental Science, 9(4), 1190–1209. https://doi.org/10.1039/c5ee03761a
Zhang, K., Zhao, Y., Wang, L., Zhao, L., Liu, X., & He, S. (2020). NIR-responsive transdermal delivery of atenolol based on polyacrylamide-modified MoS2 nanoparticles. Inorganic Chemistry Communications, 122(September), 108277. https://doi.org/10.1016/j.inoche.2020.108277
Zhang, L., Yang, Z., Zhu, W., Ye, Z., Yu, Y., Xu, Z., Ren, J., & Li, P. (2017). Dual-Stimuli-Responsive, Polymer-Microsphere-Encapsulated CuS Nanoparticles for Magnetic Resonance Imaging Guided Synergistic Chemo-Photothermal Therapy. ACS Biomaterials Science and Engineering, 3(8), 1690–1701. https://doi.org/10.1021/acsbiomaterials.7b00204
Zhang, W., Ding, M., Zhang, H., Shang, H., & Zhang, A. (2022). Tumor acidity and near-infrared light responsive drug delivery MoS2-based nanoparticles for chemo-photothermal therapy. Photodiagnosis and Photodynamic Therapy, 38(January), 102716. https://doi.org/10.1016/j.pdpdt.2022.102716
Zhang, W. J., & Huang, K. J. (2017). A review of recent progress in molybdenum disulfide-based supercapacitors and batteries. Inorganic Chemistry Frontiers, 4(10), 1602–1620. https://doi.org/10.1039/c7qi00515f
Zhang, X., Wu, J., Williams, G. R., Niu, S., Qian, Q., & Zhu, L. M. (2019). Functionalized MoS 2 -nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 173(June 2018), 101–108. https://doi.org/10.1016/j.colsurfb.2018.09.048
Zhang, X., Wu, J., Williams, G. R., Yang, Y., Niu, S., Qian, Q., & Zhu, L. M. (2019). Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. Journal of Colloid and Interface Science, 539, 433–441. https://doi.org/10.1016/j.jcis.2018.12.072
Zhang, X., Zhao, Z., Yang, P., Liu, W., Fan, J., Zhang, B., & Yin, S. (2020). MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment. Colloids and Surfaces B: Biointerfaces, 192(March), 111054. https://doi.org/10.1016/j.colsurfb.2020.111054
Zhao, Z., Yang, P., Zhang, X., ShashaYang, Lin, J., Fan, J., & Zhang, B. (2022). Combination of chemotherapy and photothermal methods for in vitro ablation of MCF-7 cancer cells using crinkly core–shell structure MoS2/C@SiO2 nanospheres. Advanced Powder Technology, 33(2), 103388. https://doi.org/10.1016/j.apt.2021.12.007
Zhou, S., Jiao, X., Jiang, Y., Zhao, Y., Xue, P., Liu, Y., & Liu, J. (2021). Engineering Eu3+-incorporated MoS2 nanoflowers toward efficient photothermal/photodynamic combination therapy of breast cancer. Applied Surface Science, 552(March), 149498. https://doi.org/10.1016/j.apsusc.2021.149498
Published
How to Cite
Issue
Section
How to Cite
Most read articles by the same author(s)
- Roseline F. Amodu, Abraham A. Aremu, Paul Sola Ayanlola, Ben Festus, Olusegun Sowole, Tunde D. Samuel, Estimation of Lung Cancer Risk Associated with Radon Exposure from Quarries in Ede, Southwestern Nigeria , Nigerian Journal of Physics: Vol. 32 No. 2 (2023): Nigerian Journal of Physics - Vol. 32 No. 2
- Mustapha Kola Lawal, Paul Sola Ayanlola, Busuyi David Kehinde, Olukunle Olanipekun Oladapo, Abraham Adewale Aremu, Emmanuel Abiodun Oni, Gbadebo Adebisi Isola, Effects of Supplementing Feed with Irradiated Tomatoes on Liver Biochemicals and Antioxidant Activities of Male Wistar Rats , Nigerian Journal of Physics: Vol. 32 No. 2 (2023): Nigerian Journal of Physics - Vol. 32 No. 2