Advancements in MoS2-based Nanocomposites for Photothermal and Chemotherapy Applications: A Mini-Review

Authors

Keywords:

Nanocomposites, MoS2, Photothermal, Photodynamic, Chemotherapy

Abstract

Nanomaterials are recognized for their excellent properties and can be used in all areas of life. Nanomaterial-based drug delivery systems are increasingly promising and useful as tools in cancer therapy. Molybdenum sulfide (MoS2), a 2D material, is extensively studied today due to its exceptional characteristics and wide range of applications. Due to its unique properties and versatility for numerous applications, MoS2 has garnered considerable attention from researchers worldwide. MoS2 has been extensively explored for biomedical applications due to its excellent photothermal conversion ability. Multiple research papers have explored the advancements and applications of MoS2 materials, but this article aims to provide an overview of its photothermal and chemotherapy applications.

Dimensions

Alimohammadi, F., Sharifian, M., Attanayake, N. H., Thenuwara, A. C., Gogotsi, Y., Anasori, B., & Strongin, D. R. (2018). Antimicrobial Properties of 2D MnO2 and MoS2 Nanomaterials Vertically Aligned on Graphene Materials and Ti3C2 MXene. Langmuir, 34(24), 7192–7200. https://doi.org/10.1021/acs.langmuir.8b00262

Ariyasu, S., Mu, J., Zhang, X., Huang, Y., Yeow, E. K. L., Zhang, H., & Xing, B. (2017). Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS2-Based Nanocomposite. Bioconjugate Chemistry, 28(4), 1059–1067. https://doi.org/10.1021/acs.bioconjchem.6b00741

Arul, N. S., & Nithya, V. D. (2016). Molybdenum disulfide quantum dots: Synthesis and applications. RSC Advances, 6(70), 65670–65682. https://doi.org/10.1039/c6ra09060e

Ataca, C., Topsakal, M., Aktürk, E., & Ciraci, S. (2011). A comparative study of lattice dynamics of three- and two-dimensional MoS2. Journal of Physical Chemistry C, 115(33), 16354–16361. https://doi.org/10.1021/jp205116x

Bazaka, K., Levchenko, I., Lim, J. W. M., Baranov, O., Corbella, C., Xu, S., & Keidar, M. (2019). MoS 2 -based nanostructures: Synthesis and applications in medicine. Journal of Physics D: Applied Physics, 51(18). https://doi.org/10.1088/1361-6463/ab03b3

Bello, I. T., Oladipo, O. A., Adedokun, O., & Dhlamini, M. S. (2020a). Recent advances on the preparation and electrochemical analysis of MoS 2 -based materials for supercapacitor applications : A mini-review. Materials Today Communications, 25(September), 101664. https://doi.org/10.1016/j.mtcomm.2020.101664

Bello, I. T., Oladipo, O. A., Adedokun, O., & Dhlamini, M. S. (2020b). Recent advances on the preparation and electrochemical analysis of MoS 2 -based materials for supercapacitor applications : A mini-review. Materials Today Communications, 25(September), 101664. https://doi.org/10.1016/j.mtcomm.2020.101664

Bello, I. T., Tsotetsi, D., Shaku, B., Adedokun, O., Chen, D., & Dhlamini, M. S. (2024). Advances in MoS2-based nanomaterials for supercapacitors, batteries and photovoltaics applications. In Journal of Energy Storage (Vol. 103, Issue PB, p. 114355). Elsevier Ltd. https://doi.org/10.1016/j.est.2024.114355

Benavente, E., Santa Ana, M. A., Mendizábal, F., & González, G. (2002). Intercalation chemistry of molybdenum disulfide. Coordination Chemistry Reviews, 224(1–2), 87–109. https://doi.org/10.1016/S0010-8545(01)00392-7

Cai, Y., Zhou, H., Zhang, G., & Zhang, Y. W. (2016). Modulating Carrier Density and Transport Properties of MoS2 by Organic Molecular Doping and Defect Engineering. Chemistry of Materials, 28(23), 8611–8621. https://doi.org/10.1021/acs.chemmater.6b03539

Cao, F., Ju, E., Zhang, Y., Wang, Z., Liu, C., Li, W., Huang, Y., Dong, K., Ren, J., & Qu, X. (2017). An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS2. ACS Nano, 11(5), 4651–4659. https://doi.org/10.1021/acsnano.7b00343

Cao, W., Yue, L., Zhang, Y., & Wang, Z. (2022). Photodynamic chitosan functionalized MoS2 nanocomposite with enhanced and broad-spectrum antibacterial activity. Carbohydrate Polymers, 277(September 2021), 118808. https://doi.org/10.1016/j.carbpol.2021.118808

Chen, H. J., Huang, J., Lei, X. L., Wu, M. S., Liu, G., Ouyang, C. Y., & Xu, B. (2013). Adsorption and diffusion of lithium on MoS2 monolayer: The role of strain and concentration. International Journal of Electrochemical Science, 8(2), 2196–2203. https://doi.org/10.1016/s1452-3981(23)14301-x

Chen, J., Li, X., Liu, X., Yan, H., Xie, Z., Sheng, Z., Gong, X., Wang, L., Liu, X., Zhang, P., Zheng, H., Song, L., & Liu, C. (2018). Hybrid MoSe2-indocyanine green nanosheets as a highly efficient phototheranostic agent for photoacoustic imaging guided photothermal cancer therapy. Biomaterials Science, 6(6), 1503–1516. https://doi.org/10.1039/c8bm00104a

Chen, W., Zeng, K., Liu, H., Ouyang, J., Wang, L., Liu, Y., Wang, H., Deng, L., & Liu, Y. N. (2017). Cell Membrane Camouflaged Hollow Prussian Blue Nanoparticles for Synergistic Photothermal-/Chemotherapy of Cancer. Advanced Functional Materials, 27(11). https://doi.org/10.1002/adfm.201605795

Chianelli, R. R., Siadati, M. H., De la Rosa, M. P., Berhault, G., Wilcoxon, J. P., Bearden, R., & Abrams, B. L. (2006). Catalytic properties of single layers of transition metal sulfide catalytic materials. Catalysis Reviews - Science and Engineering, 48(1), 1–41. https://doi.org/10.1080/01614940500439776

Chikukwa, E., Meyer, E., Mbese, J., & Zingwe, N. (2021). Colloidal synthesis and characterization of molybdenum chalcogenide quantum dots using a two‐source precursor pathway for photovoltaic applications. Molecules, 26(14). https://doi.org/10.3390/molecules26144191

Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R. J., Shvets, I. V., Arora, S. K., Stanton, G., Kim, H. Y., Lee, K., Kim, G. T., Duesberg, G. S., Hallam, T., Boland, J. J., … Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568–571. https://doi.org/10.1126/science.1194975

Dong, K., Liu, Z., Li, Z., Ren, J., & Qu, X. (2013). Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Advanced Materials, 25(32), 4452–4458. https://doi.org/10.1002/adma.201301232

Duan, S., Yang, Y., Zhang, C., Zhao, N., & Xu, F. J. (2017). NIR-Responsive Polycationic Gatekeeper-Cloaked Hetero-Nanoparticles for Multimodal Imaging-Guided Triple-Combination Therapy of Cancer. Small, 13(9), 1–10. https://doi.org/10.1002/smll.201603133

Gao, W., Wang, M., Ran, C., & Li, L. (2015). Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties. Chemical Communications, 51(9), 1709–1712. https://doi.org/10.1039/c4cc08984g

Gu, W., Yan, Y., Zhang, C., Ding, C., & Xian, Y. (2016). One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Applied Materials and Interfaces, 8(18), 11272–11279. https://doi.org/10.1021/acsami.6b01166

Guo, J., Yang, B., Ma, Q., Fometu, S. S., & Wu, G. (2021). Photothermal regenerated fibers with enhanced toughness: Silk fibroin/MoS2 nanoparticles. Polymers, 13(22). https://doi.org/10.3390/polym13223937

Guo, Y., & Li, J. (2020). MoS2 quantum dots: synthesis, properties and biological applications. Materials Science and Engineering C, 109(September 2018), 2–13. https://doi.org/10.1016/j.msec.2019.110511

Hao, J., Li, Z., Liang, Y., Tang, T., Yi, X., Ou, R., Jie, Q., Zhang, B. Y., Cheng, Y. F., Feng, W. L., & Ou, J. Z. (2025). Recent progress in two-dimensional materials : From emerging structures and synthesis approaches to electronic and sensing applications. Chemical Engineering Journal, 520(July), 1–31. https://doi.org/https://doi.org/10.1016/j.cej.2025.166133

He, Z., & Que, W. (2016). Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 3, 23–56. https://doi.org/10.1016/j.apmt.2016.02.001

Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011). Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 7(14), 1876–1902. https://doi.org/10.1002/smll.201002009

Huang, X., Zeng, Z., & Zhang, H. (2013). Metal dichalcogenide nanosheets: Preparation, properties and applications. Chemical Society Reviews, 42(5), 1934–1946. https://doi.org/10.1039/c2cs35387c

Jaleel UC, J. R., R, M., Devi K R, S., Pinheiro, D., & Mohan, M. K. (2022). Structural, Morphological and Optical Properties of MoS2-Based Materials for Photocatalytic Degradation of Organic Dye. Photochem, 2(3), 628–650. https://doi.org/10.3390/photochem2030042

Jiang, H., Du, Y., Chen, L., Qian, M., Yang, Y., Huo, T., Yan, X., Ye, T., Han, B., Wang, Y., & Huang, R. (2020). Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS2 nanoflowers. International Journal of Pharmaceutics, 586(June), 119606. https://doi.org/10.1016/j.ijpharm.2020.119606

Kabel, J., Sharma, S., Acharya, A., Zhang, D., & Yap, Y. K. (2021). Molybdenum Disulfide Quantum Dots: Properties, Synthesis, and Applications. C, 7(2), 45. https://doi.org/10.3390/c7020045

Lai, Y., Fakhri, A., & Janani, B. J. (2022). Synergistic activities of silver indium sulfide/nickel molybdenum sulfide nanostructures anchored on clay mineral for light-driven bactericidal performance, and detection of uric acid from gout patient serum. Journal of Photochemistry and Photobiology B: Biology, 234(March), 112526. https://doi.org/10.1016/j.jphotobiol.2022.112526

Lee, J., Kim, J., & Kim, W. J. (2016). Photothermally Controllable Cytosolic Drug Delivery Based on Core-Shell MoS2-Porous Silica Nanoplates. Chemistry of Materials, 28(17), 6417–6424. https://doi.org/10.1021/acs.chemmater.6b02944

Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. Te, Chang, K. Di, Yu, Y. C., Wang, J. T. W., Chang, C. S., Li, L. J., & Lin, T. W. (2012). Synthesis of large-area MoS 2 atomic layers with chemical vapor deposition. Advanced Materials, 24(17), 2320–2325. https://doi.org/10.1002/adma.201104798

Lei, Y., Ding, M., Cheng, S., Huo, D., Zhang, F., Liu, T., & Zhang, Y. (2023). Magnetically recyclable 1 T-2 H MoS2/Fe3O4 hybrids with photothermal-promoted photo-Fenton catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676(PA), 132117. https://doi.org/10.1016/j.colsurfa.2023.132117

Li, N., Zhang, W., Khan, M., Lin, L., & Lin, J. M. (2018). MoS2-LA-PEI nanocomposite carrier for real-time imaging of ATP metabolism in glioma stem cells co-cultured with endothelial cells on a microfluidic system. Biosensors and Bioelectronics, 99(July 2017), 142–149. https://doi.org/10.1016/j.bios.2017.07.046

Li, P., Liu, L., Lu, Q., Yang, S., Yang, L., Cheng, Y., Wang, Y. D., Wang, S. Y., Song, Y. L., Tan, F., & Li, N. (2019). Ultrasmall MoS 2 Nanodots-Doped Biodegradable SiO 2 Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy. ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.8b18924

Li, P. P., Liu, X. P., Mao, C. J., Jin, B. K., & Zhu, J. J. (2019). Photoelectrochemical DNA biosensor based on g-C 3 N 4 /MoS 2 2D/2D heterojunction electrode matrix and co-sensitization amplification with CdSe QDs for the sensitive detection of ssDNA. Analytica Chimica Acta, 1048, 42–49. https://doi.org/10.1016/j.aca.2018.09.063

Lin, Y. C., Dumcenco, D. O., Huang, Y. S., & Suenaga, K. (2014). Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS 2. Nature Nanotechnology, 9(5), 391–396. https://doi.org/10.1038/nnano.2014.64

Liu, C., Chen, J., Zhu, Y., Gong, X., Zheng, R., Chen, N., Chen, D., Yan, H., Zhang, P., Zheng, H., Sheng, Z., & Song, L. (2018). Highly Sensitive MoS2–Indocyanine Green Hybrid for Photoacoustic Imaging of Orthotopic Brain Glioma at Deep Site. Nano-Micro Letters, 10(3), 1–12. https://doi.org/10.1007/s40820-018-0202-8

Liu, J., Zhang, K., & Gao, Z. (2022). Synergistic effect of Ag2S nanoparticles and spiny MoS2 anchored on palygorskite for boosting light-driven antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 649(April), 129554. https://doi.org/10.1016/j.colsurfa.2022.129554

Liu, J., Zheng, J., Nie, H., Chen, H., Li, B., & Jia, L. (2020). Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chemical Engineering Journal, 381(August 2019), 122541. https://doi.org/10.1016/j.cej.2019.122541

Liu, L., Jiang, H., Dong, J., Zhang, W., Dang, G., Yang, M., Li, Y., Chen, H., Ji, H., & Dong, L. (2020). PEGylated MoS2 quantum dots for traceable and pH-responsive chemotherapeutic drug delivery. Colloids and Surfaces B: Biointerfaces, 185(August 2019), 110590. https://doi.org/10.1016/j.colsurfb.2019.110590

Liu, T., Wang, C., Cui, W., Gong, H., Liang, C., Shi, X., Li, Z., Sun, B., & Liu, Z. (2014). Combined photothermal and photodynamic therapy delivered by PEGylated MoS2nanosheets. Nanoscale, 6(19), 11219–11225. https://doi.org/10.1039/c4nr03753g

Lu, J., Chen, M., Dong, L., Cai, L., Zhao, M., Wang, Q., & Li, J. (2020). Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications. Colloids and Surfaces B: Biointerfaces, 194(March). https://doi.org/10.1016/j.colsurfb.2020.111162

Mitchell, P. C. H., Outteridge, T., Kloska, K., McMahon, S., Epshteyn, Y., Sebenik (Retired), R. F., Burkin (Retired), A. R., Dorfler, R. R., Laferty (Retired), J. M., Leichtfried, G., Meyer‐Grünow, H., & Vukasovich (deceased), M. S. (2020). Molybdenum and Molybdenum Compounds. Ullmann’s Encyclopedia of Industrial Chemistry, 1–63. https://doi.org/10.1002/14356007.a16_655.pub2

Mohammad-Andashti, P., Ramezani, Z., Zare-Shahabadi, V., & Torabi, P. (2022). Rapid and green synthesis of highly luminescent MoS2 quantum dots via microwave exfoliation of MoS2 powder and its application as a fluorescence probe for cortisol detection in human saliva. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647(April), 129048. https://doi.org/10.1016/j.colsurfa.2022.129048

Mou, J., Chen, Y., Ma, M., Zhang, K., Wei, C., Chen, H., & Shi, J. (2015). Facile synthesis of liposome/Cu2−x S-based nanocomposite for multimodal imaging and photothermal therapy. Science China Materials, 58(4), 294–301. https://doi.org/10.1007/s40843-015-0044-3

Mouloua, D., Kotbi, A., Deokar, G., Kaja, K., El Marssi, M., El Khakani, M. A., & Jouiad, M. (2021). Recent progress in the synthesis of MoS2 thin films for sensing, photovoltaic and plasmonic applications: A review. Materials, 14(12). https://doi.org/10.3390/ma14123283

Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V, & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films Supplementary. Science, 5(1), 1–12. https://doi.org/10.1126/science.aab1343

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0502848102

Pallikkarathodi Mani, N., Ganiga, M., & Yriac, J. (2018). MoS2 nanohybrid as a fluorescence sensor for highly selective detection of dopamine. Analyst, 143(7), 1691–1698. https://doi.org/10.1039/c7an01770g

Py, M. A., & Haering, R. R. (1983). STRUCTURAL DESTABILIZATION INDUCED BY LITHIUM INTERCALATION IN MoS2 AND RELATED COMPOUNDS. Canadian Journal of Physics, 61(1), 76–84. https://doi.org/10.1139/p83-013

Radhakrishnan, S., Mathew, M., & Rout, C. S. (2022). Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Materials Advances, 3(4), 1874–1904. https://doi.org/10.1039/d1ma00929j

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature Nanotechnology, 6(3), 147–150. https://doi.org/10.1038/nnano.2010.279

Rajasekar, S., Martin, E. M., Kuppusamy, S., & Vetrivel, C. (2020). Chitosan coated molybdenum sulphide nanosheet incorporated with tantalum oxide nanomaterials for improving cancer photothermal therapy. Arabian Journal of Chemistry, 13(3), 4741–4750. https://doi.org/10.1016/j.arabjc.2019.11.005

Ramakrishna Matte, H. S. S., Gomathi, A., Manna, A. K., Late, D. J., Datta, R., Pati, S. K., & Rao, C. N. R. (2010). MoS2 and WS2 analogues of graphene. Angewandte Chemie - International Edition, 49, 4059–4062. https://doi.org/10.1002/anie.201000009

Rodriguez, C. L. C., Nunes, M. A. B. S., Garcia, P. S., & Fechine, G. J. M. (2021). Molybdenum disulfide as a filler for a polymeric matrix at an ultralow content: Polystyrene case. Polymer Testing, 93(September 2020), 0–9. https://doi.org/10.1016/j.polymertesting.2020.106882

Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., & Jaiswal, A. (2019). Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress [Research-article]. ACS Applied Bio Materials, 2(7), 2738–2755. https://doi.org/10.1021/acsabm.9b00124

Saravanan, N., Ganesh, P., Pitchaimuthu, S., & Sundaramurthy, A. (2023). Nanozyme controlled photothermal heat generation on nanoceria decorated MoS2 nanoflowers for enhanced cytotoxicity in cancer chemo-photothermal therapy. Surfaces and Interfaces, 41(May), 103225. https://doi.org/10.1016/j.surfin.2023.103225

SCHONFELD, B., Moss, S. C., & Huang, J. J. (1983). Anisotropic Mean-Square Displacements (MSD) in Single Crystals of 2H- and 3R-MoS2. Acta Crystallographica Section B, 39(4), 404–407.

Song, C., Sun, Q., Qin, L., Chen, M., Li, Y., & Niu, D. (2022). Confined Construction of Ultrasmall Molybdenum Disulfide-Loaded Porous Silica Particles for Efficient Tumor Therapy. ACS Biomaterials Science and Engineering, 8(8), 3377–3386. https://doi.org/10.1021/acsbiomaterials.2c00629

Song, I., Park, C., & Choi, H. C. (2015). Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Advances, 5(10), 7495–7514. https://doi.org/10.1039/c4ra11852a

Srivastava, M., Banerjee, S., Bairagi, S., Singh, P., Kumar, B., Singh, P., Kale, R. D., Mulvihill, D. M., & Ali, S. W. (2024). Recent progress in molybdenum disulfide (MoS2) based flexible nanogenerators: An inclusive review. Chemical Engineering Journal, 480(December 2023), 147963. https://doi.org/10.1016/j.cej.2023.147963

Toth, P. S., & Velicky, M. (2017). From two-dimensional materials to their heterostructures : An electrochemist ’ s perspective. Applied Materials Today, 8, 68–103. https://doi.org/10.1016/j.apmt.2017.05.003

Tulsani, S. R., Rath, A. K., & Late, D. J. (2019). 2D-MoS2 nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Advances, 1(4), 1387–1394. https://doi.org/10.1039/c8na00272j

Wang, H., Li, X., Ge, Q., Chong, Y., & Zhang, Y. (2022). A multifunctional Fe2O3@MoS2@SDS Z-scheme nanocomposite: NIR enhanced bacterial inactivation, degradation antibiotics and inhibiting ARGs dissemination. Colloids and Surfaces B: Biointerfaces, 219(September), 112833. https://doi.org/10.1016/j.colsurfb.2022.112833

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012a). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012b). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193

Wang, S., Tan, L., Liang, P., Liu, T., Wang, J., Fu, C., Yu, J., Dou, J., Li, H., & Meng, X. (2016). Layered MoS2 nanoflowers for microwave thermal therapy. Journal of Materials Chemistry B, 4(12), 2133–2141. https://doi.org/10.1039/c6tb00296j

Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene : An Emerging Electronic Material. Advanced Materials, 1–44. https://doi.org/10.1002/adma.201201482

Wilson, J. A., & Yoffe, A. D. (1969). The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73), 193–335. https://doi.org/10.1080/00018736900101307

Wu, J., Bremner, D. H., Niu, S., Wu, H., Wu, J., Wang, H., Li, H., & Zhu, L. M. (2018). Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy. Chemical Engineering Journal, 342(February), 90–102. https://doi.org/10.1016/j.cej.2018.02.052

Wu, Z., Li, B., Xue, Y., Li, J., Zhang, Y., & Gao, F. (2015). Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. Journal of Materials Chemistry A, 3(38), 19445–19454. https://doi.org/10.1039/c5ta04549e

Xu, S., Zhang, P., Heing-Becker, I., Zhang, J., Tang, P., Bej, R., Bhatia, S., Zhong, Y., & Haag, R. (2022). Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS2 nanoflakes for multidrug-resistant tumor ablation. Biomaterials, 290(October), 121844. https://doi.org/10.1016/j.biomaterials.2022.121844

Xu, Y., Yan, L., Li, X., & Xu, H. (2019). Fabrication of transition metal dichalcogenides quantum dots based on femtosecond laser ablation. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-38929-5

Yadav, V., Roy, S., Singh, P., Khan, Z., & Jaiswal, A. (2019). 2D MoS2-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small, 15(1), 1–33. https://doi.org/10.1002/smll.201803706

Yan, C., Tian, Q., & Yang, S. (2017). Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 7(60), 37887–37897. https://doi.org/10.1039/c7ra05468h

Yang, Y., Wu, J., Bremner, D. H., Niu, S., Li, Y., Zhang, X., Xie, X., & Zhu, L. M. (2020). A multifunctional nanoplatform based on MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 185(October 2019). https://doi.org/10.1016/j.colsurfb.2019.110585

Zhang, A., Li, A., Tian, W., Li, Z., Wei, C., Sun, Y., Zhao, W., Liu, M., & Liu, J. (2017). A Target-Directed Chemo-Photothermal System Based on Transferrin and Copolymer-Modified MoS2 Nanoplates with pH-Activated Drug Release. Chemistry - A European Journal, 23(47), 11346–11356. https://doi.org/10.1002/chem.201701916

Zhang, A., Li, A., Zhao, W., Yan, G., Liu, B., Liu, M., Li, M., Huo, B., & Liu, J. (2018). An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS2 nanodots for dually controlled drug release. Chemical Engineering Journal, 342(February), 120–132. https://doi.org/10.1016/j.cej.2018.02.081

Zhang, G., Liu, H., Qu, J., & Li, J. (2016). Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy and Environmental Science, 9(4), 1190–1209. https://doi.org/10.1039/c5ee03761a

Zhang, K., Zhao, Y., Wang, L., Zhao, L., Liu, X., & He, S. (2020). NIR-responsive transdermal delivery of atenolol based on polyacrylamide-modified MoS2 nanoparticles. Inorganic Chemistry Communications, 122(September), 108277. https://doi.org/10.1016/j.inoche.2020.108277

Zhang, L., Yang, Z., Zhu, W., Ye, Z., Yu, Y., Xu, Z., Ren, J., & Li, P. (2017). Dual-Stimuli-Responsive, Polymer-Microsphere-Encapsulated CuS Nanoparticles for Magnetic Resonance Imaging Guided Synergistic Chemo-Photothermal Therapy. ACS Biomaterials Science and Engineering, 3(8), 1690–1701. https://doi.org/10.1021/acsbiomaterials.7b00204

Zhang, W., Ding, M., Zhang, H., Shang, H., & Zhang, A. (2022). Tumor acidity and near-infrared light responsive drug delivery MoS2-based nanoparticles for chemo-photothermal therapy. Photodiagnosis and Photodynamic Therapy, 38(January), 102716. https://doi.org/10.1016/j.pdpdt.2022.102716

Zhang, W. J., & Huang, K. J. (2017). A review of recent progress in molybdenum disulfide-based supercapacitors and batteries. Inorganic Chemistry Frontiers, 4(10), 1602–1620. https://doi.org/10.1039/c7qi00515f

Zhang, X., Wu, J., Williams, G. R., Niu, S., Qian, Q., & Zhu, L. M. (2019). Functionalized MoS 2 -nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 173(June 2018), 101–108. https://doi.org/10.1016/j.colsurfb.2018.09.048

Zhang, X., Wu, J., Williams, G. R., Yang, Y., Niu, S., Qian, Q., & Zhu, L. M. (2019). Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. Journal of Colloid and Interface Science, 539, 433–441. https://doi.org/10.1016/j.jcis.2018.12.072

Zhang, X., Zhao, Z., Yang, P., Liu, W., Fan, J., Zhang, B., & Yin, S. (2020). MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment. Colloids and Surfaces B: Biointerfaces, 192(March), 111054. https://doi.org/10.1016/j.colsurfb.2020.111054

Zhao, Z., Yang, P., Zhang, X., ShashaYang, Lin, J., Fan, J., & Zhang, B. (2022). Combination of chemotherapy and photothermal methods for in vitro ablation of MCF-7 cancer cells using crinkly core–shell structure MoS2/C@SiO2 nanospheres. Advanced Powder Technology, 33(2), 103388. https://doi.org/10.1016/j.apt.2021.12.007

Zhou, S., Jiao, X., Jiang, Y., Zhao, Y., Xue, P., Liu, Y., & Liu, J. (2021). Engineering Eu3+-incorporated MoS2 nanoflowers toward efficient photothermal/photodynamic combination therapy of breast cancer. Applied Surface Science, 552(March), 149498. https://doi.org/10.1016/j.apsusc.2021.149498

Published

2026-01-08

How to Cite

Bello, I. T., Adewumi, H. K., Ayanlola, P. S., Aremu, A. A., Oni, E. A., & Amuda, D. B. (2026). Advancements in MoS2-based Nanocomposites for Photothermal and Chemotherapy Applications: A Mini-Review. Nigerian Journal of Physics, 35(1), 34-48. https://doi.org/10.62292/njp.v35i1.2026.459

How to Cite

Bello, I. T., Adewumi, H. K., Ayanlola, P. S., Aremu, A. A., Oni, E. A., & Amuda, D. B. (2026). Advancements in MoS2-based Nanocomposites for Photothermal and Chemotherapy Applications: A Mini-Review. Nigerian Journal of Physics, 35(1), 34-48. https://doi.org/10.62292/njp.v35i1.2026.459

Most read articles by the same author(s)