Band-gap, Urbach's energy tail and Magnetic Analysis of Cs3+-Ni2+ Doped Zinc Spinel Ferrites Nanoparticles

Authors

Keywords:

Band gap energy, Coercivity, Magnetization, Rare-earth element, Urbach energy, Zinc spinel ferrite

Abstract

Over the years, spinel ferrites has attracted the attention of the research community as a result of the possibility for a variety of applications. Several attempts have been made in order to modify the optical and magnetic properties of spinel ferrites. Cs3+–Ni2+ substituted zinc spinel ferrite with chemical composition Zn1-xCsxFe2-xNixO4 (x=0.0, 0.1, 0.2) was prepared using sol-gel auto-combustion method and calcinated at 700oC for 5hrs. The UV-vis spectroscopy shows the presence of UV-cut-off at 447nm. The urbach energy tail increase with increase in Cs3+ and Ni2+ ions concentration. The band gap energy of the prepared samples was found to be in a semiconductor region. VSM analysis shows the appearance of super-exchange interaction as a result of replacement of Zn2+ by Cs3+ ions in A-site and Fe3+ by Ni2+ ions in B-site resulted in the slight decrease in the values of  and . The values of  is less than 0.5 which shows a single magnetic domain with uniaxial anisotropy. The values of  and  decrease with addition of Cs3+ and Ni2+ ions concentration. This decrease shows the anisotropic nature of the prepared samples.

Dimensions

Akhtar, M. N., Javed, S., Ahmad, M., Sulong, A. B., & Khan, M. A. (2020). Sol gel derived MnTi doped Co2 W-type hexagonal ferrites: Structural, physical, spectral and magnetic evaluations. Ceramics International, 46(6), 7842–7849. https://doi.org/10.1016/j.ceramint.2019.12.003

Almessiere, M. A., Güner, S., Slimani, Y., Baykal, A., Shirsath, S. E., Korkmaz, A. D., Badar, R., & Manikandan, A. (2022). Investigation on the structural , optical , and magnetic features of Dy 3 + and Y 3 + co-doped Mn 0 . 5 Zn 0 . 5 Fe 2 O 4 spinel ferrite nanoparticles. Journal of Molecular Structure, 1248, 131412. https://doi.org/10.1016/j.molstruc.2021.131412

Alrebdi, T. A., Khalil Yahaya, I., Mohammed, J., Wudil, Y. S., Paray, A., Tchouank Tekou Carol, T., Hafeez, H. Y., & Srivastava, A. K. (2022). Phase structure refinement, electric modulus spectroscopy, Urbach energy analysis, and magnetic properties of Ce3+–Ni2+-substituted Y-type barium hexaferrites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 280(January), 115682. https://doi.org/10.1016/j.mseb.2022.115682

Ananth Kumar, R. T., Chithra Lekha, P., Sanjeeviraja, C., & Pathinettam Padiyan, D. (2014). Evolution of structural disorder using Raman spectra and Urbach energy in GeSe0.5S1.5thin films. Journal of Non-Crystalline Solids, 405, 21–26. https://doi.org/10.1016/j.jnoncrysol.2014.08.029

Aslam, A., Morley, N. A., Amin, N., Arshad, M. I., Ajaz, M., Ali, A., Mahmood, K., Bibi, A., Iqbal, F., & Hussain, S. (2020). Study of structural, optical and electrical properties of La3+doped Mg0.25 Ni0.15 Cu0.25 Co0.35 Fe2-x Lax O4 spinel ferrites. Physica B: Physics of Condensed Matter, 602, 412565. https://doi.org/10.1016/j.physb.2020.412565

Azhar, M., Shakir, I., & Farooq, M. (2020). Impact of rare earth Dy + 3 cations on the various parameters of nanocrystalline nickel spinel ferrite. Journal of Materials Research and Technology, 9(3), 5313–5325. https://doi.org/10.1016/j.jmrt.2020.03.057

Debnath, S., Das, A., & Das, R. (2021). Effect of cobalt doping on structural parameters , cation distribution and magnetic properties of nickel ferrite nanocrystals. Ceramics International, 47(12), 16467–16482. https://doi.org/10.1016/j.ceramint.2021.02.095

Debnath, S., & Das, R. (2020). Study of the optical properties of Zn doped Mn spinel ferrite nanocrystals shows multiple emission peaks in the visible range –a promising soft ferrite nanomaterial for deep blue LED. Journal of Molecular Structure, 1199, 127044. https://doi.org/10.1016/j.molstruc.2019.127044

Ghorbani, H., Eshraghi, M., Dodaran, A. A. S., Kameli, P., Protasowicki, S., Johnson, C., & Vashaee, D. (2022). Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles. Materials Research Bulletin, 147(September 2021), 111642. https://doi.org/10.1016/j.materresbull.2021.111642

Hamza, M., Ali, I., Asif, M., & Ahmad, M. (2022). Detailed analysis of lanthanum impact on structural , morphological and magnetic properties of manganese spinel ferrites ( MnLa x Fe 2-x O 4 x = ( 0 . 0 , 0 . 1 , 0 . 2 ) synthesized through hydrothermal techniq. Journal of Magnetism and Magnetic Materials, 564(P1), 169852. https://doi.org/10.1016/j.jmmm.2022.169852

Kareemah A. L., Faiza A., Nasir, N. A. Yakubu A., and Fatima K. (2024) “Assessment of Radiation Dose Associated with Background Radionuclides in Quarry Soil at Dawakin-Kudu LGA Kano Nigeria. Nigerian Journal of Physics Volume 33(1). March 2024 http://doio.org/10.62292/njp.v33i1.2024.218

Kiran, A., Niaz, M., Yousaf, M., Mujassam, K., Aldossary, O. M., & Naeem, S. (2021). In fl uence of Y 3 þ , Yb 3 þ , Gd 3 þ cations on structural and electromagnetic properties of CuFe 2 O 4 nanoferrites prepared via one step sol-gel method. Journal of Rare Earths, 39(10), 1224–1231. https://doi.org/10.1016/j.jre.2020.12.003

Manikandan, A., Kennedy, L. J., Bououdina, M., & Vijaya, J. J. (2014). Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. Journal of Magnetism and Magnetic Materials, 349, 249–258. https://doi.org/10.1016/j.jmmm.2013.09.013

Mohammed, J., Batoo, K. M., Abdulaziz, A. S., Safana, A. S., Hafeez, H. Y., Raslan, E. H., Hadi, M., Assiafan, A. A. K., Imran, A., & Srivastava, A. K. (2021). Crystal structure refinement and the magnetic and electro-optical properties of Er3+–Mn2+-substituted Y-type barium hexaferrites. Ceramics International, 47(13), 18455–18465. https://doi.org/10.1016/j.ceramint.2021.03.169

Naik, S. R., Salker, A. V., Yusuf, S. M., & Meena, S. S. (2013). Influence of Co2+ distribution and spin-orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. Journal of Alloys and Compounds, 566, 54–61. https://doi.org/10.1016/j.jallcom.2013.02.163

Narang, S. B., & Pubby, K. (2021). Nickel Spinel Ferrites: A review. Journal of Magnetism and Magnetic Materials, 519, 167163. https://doi.org/10.1016/j.jmmm.2020.167163

Nasir, S., Saleemi, A. S., & Anis-ur-rehman, M. (2013). Enhancement in dielectric and magnetic properties of Ni – Zn ferrites prepared by sol – gel method. Journal of Alloys and Compounds, 572, 170–174. https://doi.org/10.1016/j.jallcom.2013.03.160

Niaz, M., Yousaf, M., Lu, Y., Azhar, M., Sarosh, A., Arshad, M., Niamat, M., Farhan, M., Ahmad, A., & Umar, M. (2021). Physical , structural , conductive and magneto-optical properties of rare earths ( Yb , Gd ) doped Ni – Zn spinel nanoferrites for data and energy storage devices. Ceramics International, 47(9), 11878–11886. https://doi.org/10.1016/j.ceramint.2021.01.028

Pubby, K., Vijay Babu, K., & Bindra Narang, S. (2020). Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 255(July 2018), 114513. https://doi.org/10.1016/j.mseb.2020.114513

Puli, V. S., Adireddy, S., & Ramana, C. V. (2015). Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. Journal of Alloys and Compounds, 644, 470–475. https://doi.org/10.1016/j.jallcom.2015.05.031

Rahman, A., Zulfiqar, S., Ul, A., Alsafari, I. A., Yaqub, U., Farooq, M., & Shahid, M. (2021). Cd-Gd-doped nickel spinel ferrite nanoparticles and their nanocomposites with reduced graphene oxide for catalysis and antibacterial activity studies. Ceramics International, 47(7PA), 9513–9521. https://doi.org/10.1016/j.ceramint.2020.12.085

Sandeep, A., Ganesh, G., Swathi, S., Rajesh, N., Sreelatha, M., N, P. K. K., Brahmanandam, B., Bose, S. C., Ravinder, D., Shanker, J., & Kumar, P. (2022). Synthesis , structural , magnetic and optical studies of Eu doped Ni – Zn nano ferrites. Ceramics International, 48(19PB), 29493–29501. https://doi.org/10.1016/j.ceramint.2022.07.071

Shah, J., & Kotnala, R. K. (2012). Room temperature magnetoelectric coupling enhancement in Mg-substituted polycrystalline GdFeO 3. Scripta Materialia, 67(4), 316–319. https://doi.org/10.1016/j.scriptamat.2012.05.003

Toprak, M. (2014). Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite. Journal of Alloys and Compounds, 615, 181–187. https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2014.06.156

Zan, F., Ma, Y., Ma, Q., Xu, Y., Dai, Z., Zheng, G., Wu, M., & Li, G. (2013). Magnetic and impedance properties of nanocomposite CoFe2 O 4/ Co0.7 Fe0.3 and single-phase CoFe 2 O4 prepared via a one-step hydrothermal synthesis. Journal of the American Ceramic Society, 96(10), 3100–3107. https://doi.org/10.1111/jace.12437

Published

2025-09-23

How to Cite

Ibrahim, U. M., Maikudi, S., Musa, A., Mohammed, J., & Ahmed, F. (2025). Band-gap, Urbach’s energy tail and Magnetic Analysis of Cs3+-Ni2+ Doped Zinc Spinel Ferrites Nanoparticles. Nigerian Journal of Physics, 34(2), 218-224. https://doi.org/10.62292/10.62292/njp.v34i2.2025.444

How to Cite

Ibrahim, U. M., Maikudi, S., Musa, A., Mohammed, J., & Ahmed, F. (2025). Band-gap, Urbach’s energy tail and Magnetic Analysis of Cs3+-Ni2+ Doped Zinc Spinel Ferrites Nanoparticles. Nigerian Journal of Physics, 34(2), 218-224. https://doi.org/10.62292/10.62292/njp.v34i2.2025.444

Most read articles by the same author(s)