Effect of Ga/(In+Ga) ratio on the Efficiency of Cu(InxGa1-x)Se2 (CIGS) Thin-Film Solar Cells

Authors

  • Hassan Abdulsalam
    Yobe State University
  • Habiba Garba Ahmad
    Maitama Sule Federal University of Education Kano
  • Fatima Musa Lariski
    Yobe State University

Keywords:

CIGS solar cells, Gallium composition, SCAPS-1D simulation, Photovoltaic performance

Abstract

Copper indium gallium diselenide (Cu(InxGa1-x)Se2, CIGS)  continues to attract significant interest as an absorber layer in thin-film solar cells owing to its high absorption coefficient, long carrier diffusion length, and tunable bandgap. A key factor governing its performance is the Ga/(In+Ga) ratio, which directly influences the electronic structure, defect formation, and carrier transport within the absorber. In this study, numerical simulations were carried out using SCAPS-1D to systematically investigate the effect of Ga incorporation across the full compositional range (x = 0–1). Composition-dependent models were employed to account for bandgap variation, electron affinity, acceptor density, defect states, and density of states. The results demonstrate that gallium incorporation significantly modifies device behavior. Increasing Ga content leads to bandgap widening, which enhances the open-circuit voltage (VOC) but reduces the short-circuit current density (JSC) due to diminished absorption in the longer wavelength region. Conversely, indium-rich compositions exhibit stronger photocurrent generation but suffer from lower voltages. The fill factor (FF) exhibits a maximum of ~61% at Ga fraction x = 0.6, while the overall device efficiency follows a bell-shaped dependence, peaking at 11.7% for x = 0.4. These results reveal a trade-off between voltage and current that must be carefully balanced through absorber composition engineering. Overall, this study identifies the optimal Ga/(In+Ga) ratio to lie within the range of 0.3–0.6, where a balance between Jsc​, VOC and FF yield the best photovoltaic response. The insights provided here can serve as practical guidelines for tailoring CIGS absorber layers to achieve improved device efficiency.

Author Biography

Hassan Abdulsalam

Reader/Physics Department 

Dimensions

Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 361, 527-532.

Dullweber, T., Rau, U., Contreras, M. A., Noufi, R., & Schock, H.-W. (2002). Photogeneration and carrier recombination in graded gap Cu (In, Ga) Se2 solar cells. IEEE Transactions on Electron Devices, 47(12), 2249-2254.

Gloeckler, M., & Sites, J. R. (2005). Potential of submicrometer thickness Cu (In, Ga) Se2 solar cells. Journal of Applied Physics, 98(10).

Kong, S. H., Ohki, K., Itoh, K., Okuda, T., Niki, S., Sakurai, K., Yamadaa, A., Ishizuka, S., & Terada, N. (2005). Band alignment at CdS/wide-band-gap Cu (In, Ga) Se2 hetero-junction by using PES/IPES. MRS Online Proceedings Library (OPL), 865, F5. 16.

Lundberg, O., Edoff, M., & Stolt, L. (2005). The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 480, 520-525.

Machkih, K., Oubaki, R., & Makha, M. (2024). A review of CIGS thin film semiconductor deposition via sputtering and thermal evaporation for solar cell applications. Coatings, 14(9), 1088.

Minemoto, T., Hashimoto, Y., Shams-Kolahi, W., Satoh, T., Negami, T., Takakura, H., & Hamakawa, Y. (2003). Control of conduction band offset in wide-gap Cu (In, Ga) Se2 solar cells. Solar energy materials and solar cells, 75(1-2), 121-126.

Rau, U., & Schock, H.-W. (1999). Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 69(2), 131-147.

Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., & Noufi, R. (2008). 19· 9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81· 2% fill factor. Progress in Photovoltaics: Research and Applications, 16(3), 235-239.

Shafarman, W. N., Siebentritt, S., & Stolt, L. (2011). Cu (InGa) Se2 Solar Cells. Handbook of photovoltaic science and engineering, 2, 546-599.

Shockley, W., & Queisser, H. (2018). Detailed balance limit of efficiency of p–n junction solar cells Renewable energy (pp. Vol2_35-Vol32_54): Routledge.

Sites, J., & Mauk, P. (1989). Diode quality factor determination for thin-film solar cells. Solar cells, 27(1-4), 411-417.

Stanbery, B. J., Abou-Ras, D., Yamada, A., & Mansfield, L. (2021). CIGS photovoltaics: reviewing an evolving paradigm. Journal of Physics D: Applied Physics, 55(17), 173001.

Sze, S. M., Li, Y., & Ng, K. K. (2021). Physics of semiconductor devices: John wiley & sons.

Thomas, S., Bertram, T., Kaufmann, C., Kodalle, T., Márquez Prieto, J. A., Hempel, H., Choubrac, L., Witte, W., Hariskos, D., & Mainz, R. (2022). Effects of material properties of band‐gap‐graded Cu (In, Ga) Se2 thin films on the onset of the quantum efficiency spectra of corresponding solar cells. Progress in Photovoltaics: Research and Applications, 30(10), 1238-1246.

Wei, S.-H., Zhang, S., & Zunger, A. (1998). Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied physics letters, 72(24), 3199-3201.

Zhu, Y., Chen, G., Ye, H., Walsh, A., Moon, C., & Wei, S.-H. (2008). Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Physical Review B—Condensed Matter and Materials Physics, 77(24), 245209.

Published

2025-10-30

How to Cite

Abdulsalam, H., Ahmad, H. G., & Lariski, F. M. (2025). Effect of Ga/(In+Ga) ratio on the Efficiency of Cu(InxGa1-x)Se2 (CIGS) Thin-Film Solar Cells. Nigerian Journal of Physics, 34(4), 89-94. https://doi.org/10.62292/10.62292/njp.v34i4.2025.440

How to Cite

Abdulsalam, H., Ahmad, H. G., & Lariski, F. M. (2025). Effect of Ga/(In+Ga) ratio on the Efficiency of Cu(InxGa1-x)Se2 (CIGS) Thin-Film Solar Cells. Nigerian Journal of Physics, 34(4), 89-94. https://doi.org/10.62292/10.62292/njp.v34i4.2025.440

Most read articles by the same author(s)