Unconstrained 3D Inversion of Airborne Magnetic Data for Mineral Targeting in the Southwestern Nigerian Basement Complex

Authors

  • Henry E. Ohaegbuchu
    Michael Okpara University of Agriculture, umudike
  • Obinna C. Dinneya
    Michael Okpara University of Agriculture, Umudike
  • Esomchi U. Nwokoma
    Michael Okpara University of Agriculture, Umudike
  • Solomon I. Uzoaru
    Michael Okpara University of Agriculture, Umudike
  • Yusuf A. Musa
    Bayero University

Keywords:

3D Magnetic Inversion, Mineral Exploration, Nigerian Basement Complex, Magnetic Susceptibility, Airborne Geophysics

Abstract

This study applies unconstrained 3D inversion of high-resolution airborne magnetic data to model subsurface susceptibility distribution in the Southwestern Basement Complex of Nigeria. Total magnetic intensity (TMI) data were processed to residual magnetic anomalies, first vertical derivative (FVD), and analytical signal maps, followed by inversion using GM-SYS 3D in Oasis Montaj software (cell size: 250 × 250 × 100 m). The model converged after 50 iterations, achieving an RMS misfit of  and . High-susceptibility anomalies (>0.05 cgs) extend laterally over 5–20 km and to depths exceeding 1.5 km, aligning with major NE–SW and NW–SE structural corridors. Integration of magnetic depth estimates, structural trends, and inversion results highlights prospective targets for iron oxide–copper–gold (IOCG), skarn-type, and gold-bearing systems. These targets coincide with structurally complex zones near the boundaries of high and low magnetic domains. The results provide a framework for prioritizing mineral exploration in the region.

Dimensions

Abraham, J., Okonkwo, C., & Bello, M. (2024). Petrological and geochemical characterization of mafic-ultramafic intrusions in Nigeria: Implications for Ni-Cu-PGE potential. Journal of African Earth Sciences, 212, 104996. https://doi.org/10.1016/j.jafrearsci.2024.104996.

Abubakar, A., Yakubu, T. A., & Ajayi, T. R. (2023). Geodynamic evolution of the Nigerian Basement Complex and associated mineral deposits. Precambrian Research, 388, 107058. https://doi.org/10.1016/j.precamres.2023.107058.

Adegbuyi, O., Akinola, O. O., & Ojo, O. A. (2021). Structural controls on mineralization in the Nigerian Basement Complex: Insights from integrated geological and geophysical data. Journal of African Earth Sciences, 179, 104202. https://doi.org/10.1016/j.jafrearsci.2021.104202.

Adetona, A. A., Adepelumi, A. A., & Ojo, A. O. (2016). Integration of airborne magnetic and satellite data for geological and structural mapping of Precambrian basement rocks in southwestern Nigeria. Journal of African Earth Sciences, 124, 31–44. https://doi.org/10.1016/j.jafrearsci.2016.09.010

Ajakaiye, D. E., Hall, D. H., & Ashiekaa, J. A. (1986). Interpretation of aeromagnetic data across the central crystalline shield of Nigeria. Geophysical Journal International, 87(2), 461–479. https://doi.org/10.1111/j.1365-246X.1986.tb06632.x

Ajakaiye, D. E., Hall, D. H., Ashiekaa, J. A., & Udensi, E. E. (1986). Magnetic anomalies in the Nigerian continental mass based on aeromagnetic surveys. Tectonophysics, 143(1–3), 137–148. https://doi.org/10.1016/0040-1951(87)90093-5

Ajibade, A. C., Rahaman, M. A., & Ogezi, A. E. (2008). The Precambrian of Nigeria. In R. C. Black et al. (Eds.), Precambrian Geology of Nigeria (pp. 1–19). Geological Survey of Nigeria.

Ajibade, A. C., Rahaman, M. A., & Ogezi, A. E. (2008). The Precambrian geology of Nigeria: A review. In Oshi, O. (Ed.), Geology of Nigeria (pp. 11–41). Nigerian Mining and Geosciences Society.

Aliyu, A., Ahmed, A. L., Dewu, M. B. B., Sonloye, S. A., Fahad, A., & Alao, J. O. (2025). Integrated airborne magnetic and radiometric data analysis for the delineation of gold mineralization zones in north-central Nigeria. Science Forum (Journal of Pure and Applied Sciences), 25, 26–50.

Anakwuba, E. K., & Chinwuko, A. I. (2015). Basement structure and mineralization potential of parts of the Lower Benue Trough, Nigeria: Insights from aeromagnetic data. Journal of African Earth Sciences, 109, 93–103. https://doi.org/10.1016/j.jafrearsci.2015.05.008

Anakwuba, E. K., & Chinwuko, A. I. (2015). Interpretation of aeromagnetic data over some parts of Lower Benue Trough (LBT) of Nigeria using spectral analysis technique. Arabian Journal of Geosciences, 8(9), 7019–7031. https://doi.org/10.1007/s12517-014-1681-8

Anakwuba, E. K., Chinwuko, A. I., & Onwuemesi, A. G. (2016). Interpretation of aeromagnetic data over parts of the Lower Benue Trough, southeastern Nigeria: Geological and structural implications. Journal of African Earth Sciences, 120, 1–12. https://doi.org/10.1016/j.jafrearsci.2016.03.007

Anakwuba, E. K., Onwuemesi, A. G., Chinwuko, A. I., & Okeke, H. C. (2016). Interpretation of aeromagnetic data over some parts of lower Benue Trough using 3D Euler deconvolution. Arabian Journal of Geosciences, 9(3), 1–12. https://doi.org/10.1007/s12517-016-2296-0

Anudu, G. K., Stephenson, R., & Macdonald, D. (2014). Using aeromagnetic data to recognize and map intrasedimentary volcanic rocks and geological structures across the Cretaceous Middle Benue Trough, Nigeria. Journal of African Earth Sciences, 99, 625–636. https://doi.org/10.1016/j.jafrearsci.2014.05.007.

Aydin, A., Ferré, E. C., & Aslan, Z. (2007). The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: Example from the Saruhan granitoids, NE Turkey. Tectonophysics, 441, 85–95. https://doi.org/10.1016/j.tecto.2007.04.017.

Biswas, A. (2016). Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Modeling Earth Systems and Environment, 2(1), 1–12. https://doi.org/10.1007/s40808-016-0080-8

Biswas, A., & Acharya, T. (2016). Identification of magnetic anomalies using 3D inversion of aeromagnetic data. Pure and Applied Geophysics, 173(8), 2751–2766. https://doi.org/10.1007/s00024-016-1273-2

Biswas, A., & Acharya, T. (2016). Interpretation of magnetic anomalies over thin sheets using very fast simulated annealing and its application in mineral exploration. Geoscientific Instrumentation, Methods and Data Systems, 5(2), 451–460. https://doi.org/10.5194/gi-5-451-2016

Biswas, A., & Rao, C. V. (2018). Mapping subsurface structures using high-resolution aeromagnetic data: A case study from the Chhattisgarh basin, India. Geocarto International, 33(8), 889–905. https://doi.org/10.1080/10106049.2016.1273393

Bowden, P., Bennett, J. N., Kinnaird, J. A., & Whitley, J. E. (1987). Petrochemical evolution of the Younger Granites of Nigeria. Journal of African Earth Sciences, 6(1), 27–45. https://doi.org/10.1016/0899-5362(87)90033-0.

Dada, S. S. (2006). Proterozoic evolution of Nigeria. In O. O. Okoro (Ed.), The Basement Complex of Nigeria and its Mineral Resources (pp. 29–44). Akin Jinad & Co.

Dearing, J. A. (2019). Environmental magnetic susceptibility (Technical handbook). GMW Associates. https://gmw.com/wp-content/uploads/2019/03/JDearing-Handbook-OM0409.pdf

Ema, A., Danjuma, M., & Aliyu, S. (2024). Structural controls on gold mineralization in migmatitic gneisses of north-central Nigeria. Ore Geology Reviews, 164, 105543. https://doi.org/10.1016/j.oregeorev.2024.105543.

Fairhead, J. D., Green, C. M., Odegard, M. E., & Stanley, J. G. (1991). Bouguer gravity anomaly map of Africa. Geophysical Journal International, 105(2), 313–323. https://doi.org/10.1111/j.1365-246X.1991.tb06713.x

Giraud, J., Ford, M., Caumon, G., Ogarko, V., Grose, L., Martin, R., & Cupillard, P. (2024). Geologically constrained geometry inversion and null-space navigation to explore alternative geological scenarios: A case study in the Western Pyrenees. Geophysical Journal International, 239(3), 1359–1379. https://doi.org/10.1093/gji/ggae192.

Gómez-Ortiz, D., Martín-Velázquez, S., & Tejero, R. (2018). Assessment of 3D magnetic inversion and resolution tests applied to complex geological settings. Journal of Applied Geophysics, 153, 41–52. https://doi.org/10.1016/j.jappgeo.2018.04.012

Gómez-Ortiz, D., Martín-Velázquez, S., García-Dueñas, V., & Tejero, R. (2018). Three-dimensional gravity and magnetic modeling of intrusive bodies: Case study from the Betic Cordillera (Spain). Tectonophysics, 724–725, 1–14. https://doi.org/10.1016/j.tecto.2018.01.004

Lelievre, P. G., & Oldenburg, D. W. (2009). A comprehensive study of linear inverse theory and application to geophysical problems. Geophysical Journal International, 179(2), 799–817. https://doi.org/10.1111/j.1365-246X.2009.04334.x

Lelièvre, P. G., Farquharson, C. G., & Hurich, C. A. (2012). Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77(1), K1–K15. https://doi.org/10.1190/geo2011-0162.1.

Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394–408. https://doi.org/10.1190/1.1443968.

Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109–119. https://doi.org/10.1190/1.1444302.

Li, Y., & Oldenburg, D. W. (2003). Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International, 152(2), 251–265. https://doi.org/10.1046/j.1365-246X.2003.01822.

Li, Y., & Shearer, S. E. (2008). Advances in 3D inversion of magnetic data. The Leading Edge, 27(1), 64–70. https://doi.org/10.1190/1.2821934

Li, Y., & Shearer, S. E. (2008). Advances in 3D inversion of potential field data in geologically complex environments. Geophysics, 73(6), I1–I10. https://doi.org/10.1190/1.2992509

Musa, Y., Ibrahim, A., & Tanko, I. (2023). Geophysical and geological mapping of iron-rich formations in schist-gneiss terrains of Nigeria. Journal of Geoscience and Environment Protection, 11(9), 45–62. https://doi.org/10.4236/gep.2023.119004.

Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Springer. https://doi.org/10.1007/978-3-540-92685-6

Obi, D. O., Onwuemesi, A. G., Anudu, G. K., Onuba, L. N., & Okonkwo, C. C. (2010). Analysis of aeromagnetic data over Okigwe area, southeastern Nigeria. Natural Science, 2(12), 1297–1302. https://doi.org/10.4236/ns.2010.212159

Odeyemi, I. B. (1990). A comparative study of remote sensing images of the structure of the Okemesi fold belt in south-western Nigeria. Tectonophysics, 173(1–4), 203–212. https://doi.org/10.1016/0040-1951(90)90221-J.

Odeyemi, I. B., & Afolabi, O. (2014). Lineament fabric and drainage pattern analysis from aeromagnetic data of part of the Basement Complex of southwestern Nigeria. Journal of Geology and Mining Research, 6(4), 59–71. https://doi.org/10.5897/JGMR2013.0200.

Odeyemi, I. B., Afolabi, O., & Akinola, O. O. (2012). Application of aeromagnetic data to structural interpretation of Basement Complex rocks in southwestern Nigeria. Journal of Mining and Geology, 48(1), 45–56.

Odeyemi, I., & Ibrahim, M. (2024). Geochemistry and tectonic implications of Pan-African granitoids in Nigeria. Precambrian Research, 392, 107083. https://doi.org/10.1016/j.precamres.2024.107083.

Ofor, N. P., & Udensi, E. E. (2014). Interpretation of aeromagnetic data over parts of the Bida Basin, Nigeria, using 2D spectral analysis. International Journal of Basic and Applied Sciences, 3(3), 19–29.

Ofor, N. P., & Udensi, E. E. (2014). Structural interpretation of the subsurface from aeromagnetic data of parts of Southern Bida Basin, Nigeria. International Journal of Basic and Applied Sciences, 3(3), 21–31. https://doi.org/10.14419/ijbas.v3i3.3108

Ogunmola, J. K., Akinlalu, A. A., & Olasunkanmi, N. K. (2020). Aeromagnetic interpretation and 3D inversion modeling of basement structures in the Nigerian schist belt. Journal of African Earth Sciences, 170, 103934. https://doi.org/10.1016/j.jafrearsci.2020.103934

Ogunmola, J. K., Ayolabi, E. A., Aizebeokhai, A. P., & Onwuemesi, A. G. (2020). Basement topography and structural analysis of the Middle Benue Trough, Nigeria, using high-resolution aeromagnetic data. Journal of African Earth Sciences, 162, 103–716. https://doi.org/10.1016/j.jafrearsci.2019.103716

Ogunmola, J. K., Olatunji, S., & Adelusi, A. O. (2020). Application of aeromagnetic data for subsurface structural mapping and mineral exploration in parts of southwestern Nigeria. Journal of African Earth Sciences, 167, 103820. https://doi.org/10.1016/j.jafrearsci.2020.103820

Okonkwo, C. T., & Folorunso, A. F. (2009). Topographic and geological mapping of part of central Nigeria using Shuttle Radar Topography Mission (SRTM) data. Nigerian Journal of Science, 43(1), 21–33.

Olade, M. A. (2024). Notes on the nature of lithium mineralization in Nigeria’s pegmatite province. ResearchGate.

Olawale, S., Usman, R., & Akande, W. (2023). Structural framework and mineralization patterns in schist belts of southwestern Nigeria. Journal of African Earth Sciences, 201, 104802. https://doi.org/10.1016/j.jafrearsci.2023.104802.

Onwubuariri, C. N., Nwokoma, E. U., Ezere, U. A., Ugwu, J. U., Onwudo, C. T. (2023) Geophysical Investigation of Environmental and Engineering Features Using Aeromagnetic Data of Ogoja and Environs Southeastern Nigeria. Nigerian Journal of Physics, Volume 32(1), 1595-0611

Oyinloye, A. O. (2011). Geology and geotectonic setting of the basement complex rocks in South-Western Nigeria: Implications on provenance and evolution. Earth Sciences Research Journal, 15(2), 123–130.

Phillips, S. C., Johnson, J. E., Clyde, W. C., Setera, J. B., Maxbauer, D. P., Severmann, S., & Riedinger, N. (2017). Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments (IODP Site C0020). Geochemistry, Geophysics, Geosystems, 18(6), 2076–2098. https://doi.org/10.1002/2017GC006943.

Rahaman, M. A. (1988). Recent advances in the study of the basement complex of Nigeria. In P. O. Oluyide, W. C. Mbonu, A. E. Ogezi, I. G. Egbuniwe, A. C. Ajibade, & A. C. Umeji (Eds.), Precambrian Geology of Nigeria (pp. 11–41). Geological Survey of Nigeria.

Salako, K. A. (2014). Basement depth and structural trends in the Upper Benue Trough, NE Nigeria, from aeromagnetic data. Journal of African Earth Sciences, 96, 99–109. https://doi.org/10.1016/j.jafrearsci.2014.04.015

Salawu, N. B., & Oden, M. I. (2022). Pan-African tectonics and mineral systems in Nigeria: Implications for solid mineral exploration. Ore Geology Reviews, 144, 104890. https://doi.org/10.1016/j.oregeorev.2022.104890.

Sun, J., & Li, Y. (2014). 3D inversion of magnetic data affected by remanent magnetization. Geophysics, 79(1), J1–J11. https://doi.org/10.1190/geo2013-0185.1

Sun, J., & Li, Y. (2014). Adaptive mesh refinement for 3D inversion of magnetic data. Geophysics, 79(6), J61–J73. https://doi.org/10.1190/geo2014-0039.1

Udensi, E. E., & Osazuwa, I. B. (2004). Spectral determination of depths to magnetic rocks under the Nupe Basin, Nigeria. Nigerian Journal of Physics, 16(2), 91–97.

Utsugi, M. (2021). Magnetic inversion to recover the subsurface block structures based on L1 norm and total variation regularization. Geophysical Journal International, 228(1), 510–537. https://doi.org/10.1093/gji/ggab355.

Wang, R., Chen, F., & coauthors. (2024). Prospecting criteria for skarn-type iron deposits in thick overburden areas: implications for remote/indirect detection. Journal of Applied Geophysics, 228, 105442. https://doi.org/10.1016/j.jappgeo.2024.105442.

Yakubu, M., Suleiman, M., & Bello, S. (2023). Metamorphic evolution and mineral potential of migmatitic terrains in Nigeria. Geological Journal, 58(12), 5124–5143. https://doi.org/10.1002/gj.4821

Published

2025-09-22

How to Cite

Ohaegbuchu, H. E., Dinneya, O. C., Nwokoma, E. U., Uzoaru, S. I., & Musa, Y. A. (2025). Unconstrained 3D Inversion of Airborne Magnetic Data for Mineral Targeting in the Southwestern Nigerian Basement Complex. Nigerian Journal of Physics, 34(3), 135-153. https://doi.org/10.62292/10.62292/njp.v34i3.2025.425

How to Cite

Ohaegbuchu, H. E., Dinneya, O. C., Nwokoma, E. U., Uzoaru, S. I., & Musa, Y. A. (2025). Unconstrained 3D Inversion of Airborne Magnetic Data for Mineral Targeting in the Southwestern Nigerian Basement Complex. Nigerian Journal of Physics, 34(3), 135-153. https://doi.org/10.62292/10.62292/njp.v34i3.2025.425

Most read articles by the same author(s)