Correlation of Spin Parameters with the Masses and Ages of some Barred Spiral Galaxies

Authors

  • Elem Daniel Adegbulu
    Federal College of Education Obudu, Cross River State
  • Emmanuel O. Aiyohuyin
    University of Benin

Keywords:

Galaxies, Barred Spiral galaxies, Spin parameter

Abstract

Cosmology is the study of the universe, or cosmos, regarded as a whole. Stars are collected into galaxies, galaxies are gravitationally bound into clusters, and even clusters of galaxies are found within larger superclusters. Galaxies are classified depending on their morphology: elliptic, lenticular, spiral or irregular. It is particularly interesting to study the structure of spiral galaxies, which is usually well differentiated in a central bulge, with a high concentration of stars, and a flat disk made up with younger stars, dust and gas. The arm of this work is to determine correlation between spin parameters, the total masses, gas masses and ages of some barred galaxies. The spin parameter happen to be the cardinal tangible parameter in verifying the morphological and visual feature of a spiral galaxy. Starting from the theoretical spin parameter equation suggested by Peebles, we analyzed the spin parameters of some barred galaxies using . In determining the correlation we use the Bravais Pearson correlation and made predictions using polynomial in MATlab.The spin parameter for Milky Way galaxy is 0.0253 which is in agreement with what is recorded in many literatures, Andromeda is 0.0491. The predicted ages for NGC 4258 was 12.63 billion years. In this work spin parameters of ten barred galaxies were calculated and their correlations gotten.

Dimensions

Abraham R. G. (1998). Perspectives in physical morphology. arXiv preprint astro-ph/9809131.

Athanassoula, E. (1992). The existence and shapes of dust lanes in galactic bars. Monthly Notice of the Royal Astronomical Society, 259(2), 345-364.

Bovy, J., Leung, H. W., Hunt, J. A., Mackereth, J. T., Garcia-Hernandez, D. A., & Roman-Lopes, A. (2019). Life in the fast lane: a direct view of the dynamics, formation, and evolution of the Milky Way’s bar. Monthly Notices of the Royal Astronomical Society, 490(4), 4740-4747.

Cervantes-Sodi, B., Li, C., Park, C., & Wang, L.(2013). On the galactic spin of barred disk galaxies. The Astrophysical Journal 775(1),19.

de Lorenzo-Cáceres, A., Méndez-Abreu, J., Thorne, B., & Costantin, L. (2019). Deconstructing double-barred galaxies in 2D and 3D--I. Classical nature of the dominant bulges. Monthly Notices of the Royal Astronomical Society, 484(1), 665-686.

Debasish, M., & Tanuka, C. (2021). Role of galactic bars in the formation of spiral arms: a study through orbital and escape dynamics—I. Celestial Mechanics and Dynamical Astronomy, 133(9).

Debattista, V. P., & Shen, J. (2006). Long-lived double-barred galaxies from pseudobulges. The Astrophysical Journal, 654(2), L127

Du, M., Debattista, V. P., Shen, J., & Cappellari, M. (2016). Kinematic properties of double-barred galaxies: simulations versus integral-field observations. The Astrophysical Journal, 828(1), 14.

Erwin, P. (2005). How large are the bars in barred galaxies?. Monthly Notices of the Royal Astronomical Society, 364(1), 283-302.

Fall, S. M., & Efstathiou, G. (1980). Formation and rotation of disc galaxies with haloes. Monthly Notices of the Royal Astronomical Society, 193(2), 189-206

Friedli, D., & Benz, W. (1993). Secular evolution of isolated barred galaxies. I-Gravitational coupling between stellar bars and interstellar medium. Astronomy and Astrophysics (ISSN 0004-6361), vol. 268, no. 1, p. 65-85., 268, 65-85.

Hernandez, X., Park, C., Cervantes-Sodi, B., & Choi, Y. Y. (2007). Empirical distributions of galactic λ spin parameters from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 375(1), 163-170.

Łokas, E. L. (2019). Anatomy of a buckling galactic bar. Astronomy & Astrophysics, 629, A52.

Mo, H. J., Mao, S., & White, S. D. (1998). The formation of galactic discs. Monthly Notices of the Royal Astronomical Society, 295(2), 319-336.

Mo, H., Van den Bosch, F., & White, S. (2010). Galaxy formation and evolution.

Obreschkow, D., & Glazebrook, K. (2014). Fundamental mass–spin–morphology relation of spiral galaxies. The Astrophysical Journal, 784(1), 26.

Raha, N., Sellwood, J. A., James, R. A., & Kahn, F. D. (1991). A dynamical instability of bars in disk galaxies. nature, 352(6334), 411-412.

Romanowsky, A. J., & Fall, S. M. (2012). Angular momentum and galaxy formation revisited. The Astrophysical Journal Supplement Series, 203(2), 17.

Sanders, J. L., Smith, L., & Evans, N. W. (2019). The pattern speed of the Milky Way bar from transverse velocities. Monthly Notices of the Royal Astronomical Society, 488(4), 4552-4564.

Sellwood, J. A. (2016). Bar instability in disk–halo systems. The Astrophysical Journal, 819(2), 92.

Sellwood, J. A., & Wilkinson, A. (1993). Dynamics of barred galaxies. Reports on Progress in Physics, 56(2), 173.

Shlosman, I., Frank, J., & Begelman, M. C. (1989). Bars within bars: a mechanism for fuelling active galactic nuclei. Nature, 338(6210), 45-47.

Predicting the Age of NGC 2903 with spin 0.4349

Published

2025-10-30

How to Cite

Adegbulu, E. D., & Aiyohuyin, E. O. (2025). Correlation of Spin Parameters with the Masses and Ages of some Barred Spiral Galaxies. Nigerian Journal of Physics, 34(4), 95-100. https://doi.org/10.62292/10.62292/njp.v34i4.2025.421

How to Cite

Adegbulu, E. D., & Aiyohuyin, E. O. (2025). Correlation of Spin Parameters with the Masses and Ages of some Barred Spiral Galaxies. Nigerian Journal of Physics, 34(4), 95-100. https://doi.org/10.62292/10.62292/njp.v34i4.2025.421

Most read articles by the same author(s)