Integrated GIS Technique and Electrical Resistivity Sounding (ERS) for Groundwater Prospecting in Yola Catchment Area, Northern Upper Benue Trough, Nigeria
DOI:
https://doi.org/10.62292/10.62292/njp.v34i2.2025.376Keywords:
Aquifers, Groundwater potential zones, Electrical resistivity, Yola CatchmentAbstract
Groundwater has become an increasingly vital resource in Nigeria, especially in the semi-arid and rapidly growing regions such as the Yola Catchment Area, located in the Northern Upper Benue Trough. The area faces challenges related to water scarcity, population pressure, climate variability, and complex subsurface geologic conditions which necessitate more effective and sustainable groundwater exploration and management strategies. This study, integrated GIS technique and electrical resistivity sounding (ERS) for groundwater prospecting in the Yola catchment area was carried out to identify zones with good potential for groundwater Using the GIS weighted sum and ERS approach. Seven thematic layers; Precipitation, lithology, lineament density, land use/land cover, Drainage network density, soil type, slope, and distance from rivers-were analyzed and weighted by their contribution to groundwater occurrence. Five zones, each representing a different level of groundwater potential, were identified in the area, these are; very poor, poor, low, moderate, and good. Results showed that approximately 21.88% of the area (110.5 km²) has moderate groundwater potential, while the majority (56.56%, or 285.6 km²) falls into the poor category. Areas with very poor and low potential covered 1.19% (6.0 km²) and 18.36% (92.8 km²) respectively, and only 1.99% (10.1 km²) was found to have good potential. Electrical resistivity sounding at five vertical electrical sounding (VES) locations revealed subsurface layers with resistivity values ranging from 10 Ωm to 57 Ωm. Areas with low resistivity (≤ 20 Ωm) likely indicate clay or water-saturated sediments that restrict water movement, while moderate resistivity values (20–55 Ωm) suggest the presence of silty sands or weathered rock, which may serve as moderate-yield aquifers if porous and saturated.
Downloads
References
Abijith, V. K., Suresh, M., & Elango, L. (2020). Assessment of the impact of urbanization on groundwater resources. Journal of Earth System Science, 129(1), 1–11.
Abuzed, T., & Alrefaee, H. (2017). Integration of GIS and geoelectrical techniques for groundwater assessment in arid regions. Arabian Journal of Geosciences, 10(22), 499.
Agbasi, O. E., Aziz, N. A., Abdulrazzaq, Z. T., & Etuk, S. E. (2019). Integrated geophysical data and GIS technique to forecast the potential groundwater locations in part of South Eastern Nigeria. Iraqi Journal of Science, 60(5), 1013–1022.
Ahmad, M., & Al-Ghouti, M. A. (2020). Groundwater: Occurrence, quality, and management. In Water and Sustainable Development (pp. 47–68). Springer.
Akintorinwa, O. J., & Okoro, A. I. (2019). Geophysical investigation for groundwater potential in a basement complex terrain. Journal of African Earth Sciences, 151, 144–154.
Alley, W. M., Reilly, T. E., & Franke, O. L. (2002). Sustainability of groundwater resources (U.S. Geological Survey Circular 1186). U.S. Geological Survey.
Arulbalaji, P., Padmalal, D., & Maya, K. (2019). AHP and GIS-based approach for delineating groundwater potential zones in the complex hard rock terrain of Western Ghats, India. Applied Water Science, 9(3), 1–17.
Attwa, M., & Zamzam, M. (2020). Integrated approach using geophysical and hydrochemical data for groundwater exploration. HydroResearch, 3, 28–38.
Bear, J. (1979). Hydraulics of groundwater. McGraw-Hill.
Belhadj, M., Chenini, I., & Bouri, S. (2025). Global access to safe drinking water: Trends, challenges, and prospects. Environmental Challenges, 10, 100573.
Benkhelil, J. (1982). Benue Trough and Benue Chain. Geological Magazine, 119(2), 155–168. https://doi.org/10.1017/S0016756800025842
Biswas, A., Sharma, S. P., & Kumar, A. (2012). Delineating prospective groundwater zones in hard rock terrain from electrical resistivity and VES data. Hydrogeology Journal, 20(4), 743–755. https://doi.org/10.1007/s10040-012-0845-2
Bond, N. R., Costelloe, J. F., King, A. J., & Warfe, D. M. (2019). Managing freshwater flows for the environment in a changing climate. Marine and Freshwater Research, 70(8), 1101–1113.
Brady, N. C., & Weil, R. R. (2010). Elements of the nature and properties of soils (3rd ed.). Prentice Hall.
Burke, K., & Dewey, J. F. (1973). Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks. The Journal of Geology, 81(4), 406–433.
Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (2nd ed.). Oxford University Press.
Chorley, R. J., Schumm, S. A., & Sugden, D. E. (2019). Geomorphology. Routledge.
Chowdhury, A., Jha, M. K., & Chowdhary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS, and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222.
Dhakate, R., Singh, V. S., & Mohanty, B. P. (2016). Integrated geophysical techniques for groundwater prospecting in hard rock terrains. Journal of Hydrology, 540, 774–785.
Dike, E. F. C. (1993). Stratigraphy and structure of the Kerri–Kerri Basin, Upper Benue Trough, Northeastern Nigeria. Journal of Mining and Geology, 29(2), 77–93.
Dike, E. F. C. (2002). Sedimentation and tectonic evolution of the Upper Benue Trough and Bornu Basin, northeastern Nigeria. Journal of Mining and Geology, 38(2), 155–168.
Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology. John Wiley & Sons.
Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945–948.
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.
Guiraud, R. (1990). Tectono-sedimentary framework of the Early Cretaceous continental Bima Formation, Upper Benue Trough, NE Nigeria. Journal of African Earth Sciences, 10(1/2), 341–353. https://doi.org/10.1016/0899-5362(90)90101-O
Gyeltshen, S., Dorji, P., & Tshering, L. (2020). Groundwater potential zonation using GIS and remote sensing techniques. Hydrology, 7(1), 13.
Hengl, T., & Reuter, H. I. (Eds.). (2009). Geomorphometry: Concepts, software, applications. Elsevier.
Hillel, D. (2004). Introduction to environmental soil physics. Academic Press.
Hussein, M., Gharib, A. F., & Abdelrahman, E. M. (2017). Integrating remote sensing and geoelectrical data for groundwater exploration. Journal of African Earth Sciences, 134, 714–727.
IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Intergovernmental Panel on Climate Change.
Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in a hard rock region using geoinformatics. Environmental Monitoring and Assessment, 166(1), 537–556.
Jhariya, D. C., Champati Ray, P. K., & Patel, N. R. (2021). Delineation of groundwater potential zones using AHP and GIS. Applied Water Science, 11(3), 1–14.
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel-2 and deep learning. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 4704–4707). IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553493
Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration (3rd ed.). Wiley-Blackwell.
Khan, S., Shankar, R., & Kumar, R. (2021). Assessment of aquifer potential using vertical electrical sounding in alluvial terrain. HydroResearch, 4, 27–34.
Li, Z., Zhu, C., & Gold, C. (2005). Digital terrain modeling: Principles and methodology. CRC Press.
Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote sensing and image interpretation (7th ed.). Wiley.
Mishra, K. (2023). Importance of groundwater in sustainable water management. Water Resources Management, 37(1), 45–59.
Mogaji, K. A. (2016). GIS-based geoelectrical assessment of aquifer potential. Journal of African Earth Sciences, 121, 274–288.
Mogaji, K. A., Lim, H. S., & Abdullahi, U. M. (2015). Statistical evaluation of groundwater potential in a basement complex terrain. Environmental Earth Sciences, 74(10), 7067–7080.
Mohamed, A. A., Mahmoud, S. H., & Alazba, A. A. (2023). Integrated geophysical investigations for sustainable groundwater development. Groundwater for Sustainable Development, 20, 100809.
Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103
Obaje, N. G. (1994). Coal petrography, microfossils and palaeoenvironments of Cretaceous coal measures in the Middle Benue Trough of Nigeria. Tectonophysics, 7(3), 245–263.
Omolaiye, A. M., Oladunjoye, M. A., & Amadi, A. N. (2020). Delineation of groundwater potential zones using GIS and geoelectrical resistivity data. Environmental Earth Sciences, 79, 78.
Owolabi, O. A., Akinlalu, A. A., & Adewumi, T. O. (2020). GIS-based groundwater potential mapping in crystalline basement terrain. Heliyon, 6(9), e04887.
Pandey, P., Himanshu, S. K., & Mishra, S. K. (2020). Groundwater recharge estimation using remote sensing and GIS techniques: A case study. Sustainable Water Resources Management, 6(3), 1–12.
Petters, S. W. (1982). Central West African Cretaceous-Tertiary benthic foraminifera and stratigraphy. Palaeontographica Abteilung A, 179(1–3), 1–104.
Rao, S. M., Sarma, V. S., & Radhakrishna, M. (2020). Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of Siddipet district, Telangana, India. Applied Water Science, 10(7), 1–14. https://doi.org/10.1007/s13201-020-01234-7
Reynolds, J. M. (2011). An introduction to applied and environmental geophysics (2nd ed.). Wiley-Blackwell.
Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
Sunu, F., & Adetola, M. O. (2022). Impacts of climate variability on groundwater resources in Yola Catchment. Nigerian Journal of Environmental Sciences and Technology, 6(2), 82–91.
Selvam, S., Dhivakar, S., & Magesh, N. S. (2015). Groundwater potential zone identification using remote sensing and GIS. Arabian Journal of Geosciences, 8, 867–875.
Shahid, S., & Nath, S. K. (2002). GIS integration of remote sensing and geophysical data for groundwater exploration. Journal of Spatial Hydrology, 2(2), 1–14.
Singh, P. K., & Prakash, A. (2002). Delineation of groundwater potential zones using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 30(4), 197–204.
Singh, S. K., Panda, S. N., & Kumar, A. (2018). Integrated geospatial techniques for groundwater prospect mapping. Journal of Environmental Management, 207, 101–112.
Singhal, B. B. S., & Gupta, R. P. (2010). Applied hydrogeology of fractured rocks (2nd ed.). Springer.
Sophocleous, M. (2002). Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(1), 52–67. https://doi.org/10.1007/s10040-001-0170-8
Taha, A. M., Ahmed, A. I., & Zaki, A. S. (2021). Integration of geophysical and GIS techniques for groundwater evaluation. HydroResearch, 4, 54–66.
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319. https://doi.org/10.1029/96WR03137
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (2nd ed.). Cambridge University Press.
Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed.). Wiley.
UNESCO. (2019). The United Nations World Water Development Report 2019: Leaving No One Behind. United Nations Educational, Scientific and Cultural Organization.
UNESCO. (2022). The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible. United Nations Educational, Scientific and Cultural Organization.
UN-Water. (2020). Water and Climate Change. United Nations. Vasantrao, B. B., Suresh, S., & Krishna, P. M. (2017). Delineation of groundwater potential zones using geoinformatics. Applied Water Science, 7(8), 4331–4341.
Wang, X., Yang, T., & Wang, Y. (2015). Relationship between drainage density and rainfall-runoff processes: A case study in a semi-arid basin. Water, 7(12), 6931–6948. https://doi.org/10.3390/w7126665
Ward, R. C., & Robinson, M. (2000). Principles of hydrology (4th ed.). McGraw-Hill.
Weil, R. R., Brady, N. C., & Weil, R. R. (2016). The nature and properties of soils (15th ed.). Pearson.
Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis: Principles and applications. Wiley.
Zaborski, P. (2000). Cretaceous stratigraphy, paleogeography and tectonism of the southern parts of the Upper Benue Trough, Nigeria. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 22(1), 153–165.
Zaborski, P. (2003). Guide to the Cretaceous paleogeography of the Upper Benue Basin. NAPE Bulletin, 15(1), 23–42.
Zaborski, P., Ugodulunwa, F., Idornigie, A., Nnabo, P., & Ibe, K. (1997). The Cretaceous and Paleogene Sedimentary Basins of Nigeria. Nigerian Mining and Geosciences Society Bulletin, 32, 1–97.
Zaher, M., El-Kelani, R., & Hamed, Y. (2021). Integrated geophysical methods for groundwater assessment in arid environments. Journal of African Earth Sciences, 180, 104205.