Design of Wideband Bandpass and Lowpass Filters with Good Insertion Loss
Main Article Content
Abstract
This paper proposes and demonstrates microstrip filters. A microstrip lowpass filter prototype was designed based on a maximally flat response, then transformed and scaled to step impedance and bandpass filters using a circuit theory-based method. The frequency response of all the filters shows a -3 dB insertion loss at the 1.5 GHz cutoff frequency. The lowpass and step impedance filters exhibit good insertion losses of -24 dB and -18 dB at 3 GHz, respectively. The bandpass filter exhibits a -3 dB bandwidth of 3 GHz, a wideband with potential applications in amplifiers and speakers. A finite-difference time-domain method could be employed to perform an electromagnetic analysis of the filters.
Downloads
Article Details
References
Bhandari, B., Im, C. S., Lee, K. P., Kim, S. M., Oh, M. C., & Lee, S. S. (2020). Compact and broadband edge coupler based on multi-stage silicon nitride tapers. IEEE Photonics Journal, 12(6), 1–12. https://doi.org/10.1109/JPHOT.2020.3036498
Chen, Z., Xu, Q., Zhang, K., Wong, W.-H., Zhang, D.-L., Pun, E. Y.-B., & Wang, C. (2021). Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Optics Letters, 46(5), 1161–1164. https://doi.org/10.1364/ol.420250
Fan Yang and Yahya Rahmat-Samii. (2009). Electromagnetic Band Gap Structures in Antenna Engineering. (H. A. Steve C. Cripps, Ed.) (first edit). Cambridge University Press.
Gómez-garcía, R., & Member, S. (2019). Symmetrical Quasi-Absorptive RF Bandpass Filters. IEEE Transactions On Microwave Theory and Techniques, 67(4), 1472–1482.
Gupta, D., & Chaurasia, K. (2014). CSRR Based Low Pass Microstrip Filter Using Stepped Impedance. In IEEE International Conference on Medical Imaginig, m-Health and Emerging Communicaton Sytems (pp. 35–39).
Gupta, D., Chaurasia, K., Rathor, A., & Singhal, P. K. (2015). Designing of Double Negative Media Based Low Pass Microstrip Filter Using Stepped Impedance. In IEEE International Conference on Signal Processing and Integrated Networks (pp. 633–637).
Kushwah, V. S., Tomar, G. S., & Bhadauria, S. S. (2013). Designing Stepped Impedance Microstrip Low-Pass Filters Using Artificial Neural Network at 1.8 GHz. In IEEE International Conference on Communication Systems and Network Technologies (pp. 11–16). https://doi.org/10.1109/CSNT.2013.11
Labrenz, J., Bahr, A., Durdaut, P., Höft, M., Kittmann, A., Schell, V., & Quandt, E. (2019). Frequency Response of SAW Delay Line Magnetic Field/Current Sensor. IEEE Sensors Letters, 3(10), 10–13. https://doi.org/10.1109/LSENS.2019.2943129
Ma, Z., Nomiyama, K., & Kobayashi, Y. (2005). Microstrip lowpass filters with reduced size and improved stopband characteristics. IEICE Transactions on Electronics, E88–C(1), 62–66. https://doi.org/10.1093/ietele/E88-C.1.62
Matthaei, G. L., Young, L. E. O., & Jones, E. M. T. (1980). Microwave Filters, Impedance-Matching Networks, and Coupling Structures (First Edit). new jersey, USA: BookMart Press.
Nasidi, I., & Bello, H. (2022). Wideband and Dual-Band Antennas with Band-Notched Using Electromagnetic Band-Gap Structure. Nigerian Journal of Technology, 41(5), 887–894.
Pozar, D. M. (2005). Microwave Engineering. (G. A. Bill Zobrist, Ed.) (Third Edit). Massachusetts: John Wiley & sons, lnc.
Resonators, M. S. H., Hsieh, L., Member, S., & Chang, K. (2003). Compact Elliptic-Function Low-Pass Filters Using. IEEE Transactions On Microwave Theory and Techniques, 51(1), 193–199.
Shen, Y., Bootsman, R., Alavi, M. S., & De Vreede, L. C. N. (2022). A Wideband IQ-Mapping Direct-Digital RF Modulator for 5G Transmitters. IEEE Journal of Solid-State Circuits, 57(5), 1446–1456. https://doi.org/10.1109/JSSC.2022.3144362
Tomar, L., Gupta, S., Tomar, R., & Bhartia, P. (2015). Design and Analysis of Low Pass Microstrip Filters using MATLAB. In IEEE International symposium on Quality Electronic Design (pp. 263–267).