Procedural Framework for Internet of Things (IoT) Implementation in Crop Production
Main Article Content
Abstract
The world population growth predictions by the United Nations and other researchers are a serious indicator that special attention should be given to smart agriculture to enhance productivity and close the demand and supply gap. In this paper, the concept of IoT was discussed and related literature was reviewed to present the state of the art in IoT technology. A conceptual framework for IoT implementation in crop farming was presented which can provide farmers with enough information to apply soil nutrients with precision, thereby enhancing crop yield and cutting down on wastage of resources from uniformed soil nutrient supplementation.
Downloads
Article Details
References
Awan, M. R.; Ansari, N. M.; Iqbal, R.; Sadiq J.; Rana, S.; Nasir, M. E.; Waqar, A.; Mohiuddin, M.; Ismail, M.; Tariq, T (2022). Design and Implementation of IoT-Based Smart Precision Agriculture Farming. Journal of Xi’an Shiyou University, Natural Science Edition. ISSN: 1673-064X. VOLUME 18 ISSUE 10. 821-825
Ezeofor, C. J., Okafor, E. C., K., A., & Zakka, U. (2021). IOT Architecture for Real Time Maize Stem Borers’ Detection and Capturing in Precision Farming. Journal of Engineering and Applied Sciences, 18(1), 381-392.
Ferrag, Mohamed Amine, Lei Shu, Xing Yang, Abdelouahid Derhab, and Leandros Maglaras. "Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges." IEEE access 8 (2020): 32031-32053.
Gowda D., Prabhu S., Jayashree R., Kudari M. and Samal A. (2021) Smart Agriculture and Smart Farming using IoT Technology, Journal of Physics, IOP PUBLISHING, UK
Lalitha, R.V.S., Srinivas, R., Raghavendran, C., Kavitha, K., Kumar, P.S.V.V.S.R., Sravanthi, P.S.L. (2022). Real Time Nitrogen, Phosphorus, Potassium (NPK) Detection in Soil Using IoT. In: Mandal, J.K., De, D. (eds) Advanced Techniques for IoT Applications. EAIT 2021. Lecture Notes in Networks and Systems, vol 292. Springer, Singapore. https://doi.org/10.1007/978-981-16-4435-1_39
Mohanraj, I., Kirthika Ashokumar, and J. Naren. "Field monitoring and automation using IOT in agriculture domain." Procedia Computer Science 93 (2016): 931-939
Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., & Nillaor, P. (2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, 156, 467-474. doi:https://doi.org/10.1016/j.compag.2018.12.011
Pachayappan, Murugaiyan, C. Ganeshkumar, and Narayanasamy Sugundan. "Technological implication and its impact in agricultural sector: An IoT Based Collaboration framework." Procedia Computer Science 171 (2020): 1166-1173.
Raikar, Meenaxi M., Padmashree Desai, Namita Kanthi, and Sachin Bawoor. "Blend of Cloud and Internet of Things (IoT) in agriculture sector using lightweight protocol." In 2018 international conference on advances in computing, communications and informatics (ICACCI), pp. 185-190. IEEE, 2018.
Rathod N., Panigrahi S. and Pinjarkar V.(2020) SMART FARMING: IOT Based Smart Sensor Agriculture Stick for Live Temperature and Humidity Monitoring, International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 IJERTV9IS070175 www.ijert.org Vol. 9 Issue 07, July-2020
Sekaran1 K., Meqdad M. N., Kumar P., Rajan S. and Kadry S.(2020) Smart agriculture management system using internet of things Computing, Electronics and Control No. 3 Vol. 18, pp. 1275~1284 ISSN 1693-6930 TELKOMNIKA Telecommunication,, DOI: 10.12928/TELKOMNIKA.v18i3.14029 https://www.allflex.global/product/tissue-sampling/
Senapaty, M. K., Ray, A., & Padhy, N. (2023). IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for Precision Agriculture. Computers, 12(61), 1-34. doi:https://doi.org/10.3390/computers12030061
Sivakumar Sabapathy Arumugam, Mohanapriya Ganeshmurthi, Rashini Annadurai, Vignesh Ravichandran, "Internet of Things based Smart Agriculture", International Journal of Advances in Computer and Electronics Engineering, Vol. 3, No. 3, pp. 8-17, March 2018.
Sundaresan, S., Johnson, S. D., Bharathy, V. M., Kumar, P. M., & Surendar, M. (2023). Machine learning and IoT-based smart farming for enhancing crop yield. Journal of Physics: Conference Series, 1-9. doi:doi:10.1088/1742-6596/2466/1/012028
Taris, L., Cahyadi, A., Nurmala, N., Jaya, H., & Shalihah, A. (2022). IoT-Based Smart Irrigation System for Rice Fields. Research Square, 1-18. doi:https://doi.org/10.21203/rs.3.rs-1265860/v1
Ukarande, A.; Galve, Y.; Chvan, K; Chavan, R.; Adsul, D. (2022); Smart Farming System Using IOT. International Journal of Research in Engineering and Science (IJRES). ISSN (Online): 2320-9364, ISSN (Print): 2320-9356. Volume 10 Issue 5. PP. 83-87