Assessment of Wind Speed Distributions and Turbine Characteristics in Equatorial West Africa

Authors

Keywords:

Null wind, Modality, Probability distribution functions, Turbine Efficiency

Abstract

Wind nullity, low wind, and bi- or multi-modality are common characteristics at high temporal resolution, especially in Equatorial regions. The traditional two-parameter Weibull (Weibull) distribution function (DF) is not designed to capture such peculiarities. Hourly mean wind speed data for eight locations that cut across different climate zones in an Equatorial region of West Africa have been analyzed using Weibull and Maximum Entropy Principle-based (MEP) distribution functions (DFs). Wind characteristics, such as power density, null wind speed, and modal distributions, together with turbine efficiency, capacity, and availability factors, were also assessed at a wind turbine hub height of 73 m using standard statistical tools. The results indicated that null wind speed and/or bimodality were present in the wind distributions at Abuja, Akure, Akungba, Nsukka, Makurdi, and Yola. The results of the assessments of the two DFs show that the MEP DF generated much better results across all time scales (R2: 0.83 - 0.98; RMSE: 0.0037 - 0.0109 m/s2) than the Weibull DF (R2: 0.47 - 0.98; RMSE: 0.0038 - 0.0191 m/s2), especially for locations where null wind speed and bimodality were prominent in the wind data distribution. MEP DF results further indicated that annual and rainy season periods were better modeled than the dry season in all the locations. The overall effect of all the turbine characteristics on annual and seasonal scales is that sufficient winds were available (Availability factor: 0.733 - 0.97; Capacity factor: 0.350 - 0.778) at the rated power for energy production in all the climate zones.

Author Biography

Taofeek Abiodun Otunla

Senior Lecturer at Department of Physics, University of Ibadan, Ibadan, Nigeria

Dimensions

Adegbehin, A. B., Yusuf, Y. O., Iguisi, E. O., & Zubairu, I. (2016). Reservoir inflow pattern and its effects on hydroelectric power generation at the Kainji Dam, Niger State, Nigeria. WIT Transactions on Ecology and the Environment, 203, 233–244.

Ajayi, O. O., Fagbenle, R. O., Katende, J., Aasa, S. A., & Okeniyi, J. O. (2013). Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. International Journal of Energy and Environmental Engineering, 4(1), 27. https://doi.org/10.1186/2251-6832-4-27

Akpinar, E. Kavak., & Akpinar, S. (2004). Determination of the wind energy potential for Maden-Elazig, Turkey. Energy Conversion and Management, 45(18-19), 2901–2914. https://doi.org/10.1016/j.enconman.2003.12.016

Akpinar, S., & Kavak Akpinar, E. (2007). Wind energy analysis based on maximum entropy principle (MEP)-type distribution function. Energy Conversion and Management, 48(4), 1140–1149. https://doi.org/10.1016/j.enconman.2006.10.004

AKYUZ, H. E., & GAMGAM, H. (2017). Statistical Analysis of Wind Speed Data with Weibull, Lognormal and Gamma Distributions. Cumhuriyet Science Journal, 38(4), 68–76. https://doi.org/10.17776/csj.358773

Alrashidi, M., Rahman, S., & Pipattanasomporn, M. (2020). Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds. Renewable Energy, 149, 664–681. https://doi.org/10.1016/j.renene.2019.12.048

Ben, U. C., Akpan, A. E., Mbonu, C. C., & Ufuafuonye, C. H. (2021). Integrated technical analysis of wind speed data for wind energy potential assessment in parts of southern and central Nigeria. Cleaner Engineering and Technology, 2, 100049. https://doi.org/10.1016/j.clet.2021.100049

Carta, J. A., & Ramírez, P. (2007). Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago. Energy Conversion and Management, 48(1), 281–291. https://doi.org/10.1016/j.enconman.2006.04.004

Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis. Renewable and Sustainable Energy Reviews, 13(5), 933–955. https://doi.org/10.1016/j.rser.2008.05.005

Celik, A. N. (2003). Energy output estimation for small-scale wind power generators using Weibull-representative wind data. Journal of Wind Engineering and Industrial Aerodynamics, 91(5), 693–707. https://doi.org/10.1016/s0167-6105(02)00471-3

Celik, A. N., Makkawi, A., & Muneer, T. (2010). Critical evaluation of wind speed frequency distribution functions. Journal of Renewable and Sustainable Energy, 2(1), 013102. https://doi.org/10.1063/1.3294127

Chang, T. P. (2011). Estimation of wind energy potential using different probability density functions. Applied Energy, 88(5), 1848–1856. https://doi.org/10.1016/j.apenergy.2010.11.010

Chang, T.-J., Wu, Y.-T., Hsu, H.-Y., Chu, C.-R., & Liao, C.-M. (2003). Assessment of wind characteristics and wind turbine characteristics in Taiwan. Renewable Energy, 28(6), 851–871. https://doi.org/10.1016/s0960-1481(02)00184-2

Chellali, F., Khellaf, A., Belouchrani, A., & Khanniche, R. (2012). A comparison between wind speed distributions derived from the maximum entropy principle and Weibull distribution. Case of study; six regions of Algeria. Renewable and Sustainable Energy Reviews, 16(1), 379–385. https://doi.org/10.1016/j.rser.2011.08.002

Csereklyei, Z., Rubio, M., & Stern, D. I. (2014). Energy and Economic Growth: The Stylized Facts. SSRN Electronic Journal, 37. https://doi.org/10.2139/ssrn.2734493

Donoghue, H. (2012). 2050 Energy Roadmap: Energy Policy & Innovation. European Energy & Climate Journal, 2(1), 32–37. https://doi.org/10.4337/eecj.2012.01.02

Dorvlo, A. S. S. (2002). Estimating wind speed distribution. Energy Conversion and Management, 43(17), 2311–2318. https://doi.org/10.1016/s0196-8904(01)00182-0

Europe, W. (2017). Wind energy in Europe: Scenarios for 2030. Wind Europe: Brussels, Belgium.

Garcia, A., Torres, J. L., Prieto, E., & de Francisco, A. (1998). Fitting wind speed distributions: a case study. Solar Energy, 62(2), 139–144. https://doi.org/10.1016/s0038-092x(97)00116-3

Jaramillo, O. A., & Borja, M. A. (2004). Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renewable Energy, 29(10), 1613–1630. https://doi.org/10.1016/j.renene.2004.02.001

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical Review, 106(4), 620–630. https://doi.org/10.1103/physrev.106.620

Justus, C. G., Hargraves, W. R., Mikhail, A., & Graber, D. (1978). Methods for Estimating Wind Speed Frequency Distributions. Journal of Applied Meteorology, 17(3), 350–353. https://doi.org/10.1175/1520-0450(1978)017%3C0350:mfewsf%3E2.0.co;2

Kavak Akpinar, E., & Akpinar, S. (2005). A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Conversion and Management, 46(4), 515–532. https://doi.org/10.1016/j.enconman.2004.05.002

Ladokun, L. L., Sule, B. F., Ajao, K. R., & Adeogun, A. G. (2018). Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria. Water Science, 32(2), 338–354. https://doi.org/10.1016/j.wsj.2018.05.003

Li, M., & Li, X. (2004). On the probabilistic distribution of wind speeds: theoretical development and comparison with data. International Journal of Exergy, 1(2), 237–237. https://doi.org/10.1504/ijex.2004.005096

Li, M., & Li, X. (2005a). Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada. Energy Conversion and Management, 46(18-19), 3014–3033. https://doi.org/10.1016/j.enconman.2005.02.011

Li, M., & Li, X. (2005b). MEP-type distribution function: a better alternative to Weibull function for wind speed distributions. Renewable Energy, 30(8), 1221–1240. https://doi.org/10.1016/j.renene.2004.10.003

Milone, E. F., & Wilson, W. J. (2014). Planetary atmospheres, Solar System Astrophysics.: Planetary Atmospheres and the Outer Solar System, 337–397.

Milone, E. F., & William J.F. Wilson. (2008). Solar System Astrophysics. Springer Science & Business Media.

Okeniyi, J. O., Ohunakin, O. S., & Okeniyi, E. T. (2015). Assessments of Wind-Energy Potential in Selected Sites from Three Geopolitical Zones in Nigeria: Implications for Renewable/Sustainable Rural Electrification. The Scientific World Journal, 2015, 1–13. https://doi.org/10.1155/2015/581679

Olaniyi, A. M., Okesiji, S. O., & Akinbamilowo, O. L. (2025). Renewable Energy Policies for Addressing Energy Poverty and Mitigating Climate Change in Sub-Saharan Africa. Sustainability and Climate Change, 3. https://doi.org/10.1089/scc.2025.0011

Okpala, C.N., Tijani,B.I., & Yohanna,A.(2026). A machine Learning-Based Adaptive Framework for Wind Energy Potential Assessment across Nigeria’s Climate Zones. Nigerian Journal of Physics, 35(1), 1-7. https://doi.org/10.62292/njp.v35i1.2026.474

Otunla T.A., & Umoren A.K. (2022). Wind Characteristics and Potentials of Two-Parameter Weibull Distribution and Maximum Entropy-Based Distribution Functions at an Equatorial Location. Journal of Science and Technology, 14(2). https://doi.org/10.30880/jst.2022.14.02.005

Otunla, T. A. (2019). Estimation of daily solar radiation at equatorial region of West Africa using a more generalized Ȧngström-based broadband hybrid model. Meteorology and Atmospheric Physics, 132(3), 341–351. https://doi.org/10.1007/s00703-019-00691-8

Otunla, T. A., & Kolebaje, O. T. (2015). Assessing the performance of global solar radiation empirical models at a Sahelian Site, Sokoto, Nigeria. Journal of the Nigerian Association of Mathematical Physics, 30, 489–496.

Ouammi, A., Dagdougui, H., Sacile, R., & Mimet, A. (2010). Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renewable and Sustainable Energy Reviews, 14(7), 1959–1968. https://doi.org/10.1016/j.rser.2010.04.015

Oyedepo, S. O., Adaramola, M. S., & Paul, S. S. (2012). Analysis of wind speed data and wind energy potential in three selected locations in south-east Nigeria. International Journal of Energy and Environmental Engineering, 3(1), 7. https://doi.org/10.1186/2251-6832-3-7

Paul, S. S., Oyedepo, S. O., & Adaramola, M. S. (2012). Economic Assessment of Water Pumping Systems Using Wind Energy Conversion Systems in the Southern Part of Nigeria. Energy Exploration & Exploitation, 30(1), 1–17. https://doi.org/10.1260/0144-5987.30.1.1

Peterson, E. W., & Hennessey, J. P. (1978). On the Use of Power Laws for Estimates of Wind Power Potential. Journal of Applied Meteorology, 17(3), 390–394. https://doi.org/10.1175/1520-0450(1978)017%3C0390:otuopl%3E2.0.co;2

Ramírez, P., & Carta, J. A. (2005). Influence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: a case study. Energy Conversion and Management, 46(15-16), 2419–2438. https://doi.org/10.1016/j.enconman.2004.11.004

Saad, T., & Ruai, G. (2019). PyMaxEnt: A Python software for maximum entropy moment reconstruction. SoftwareX, 10, 100353. https://doi.org/10.1016/j.softx.2019.100353

Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. The Mathematical Gazette, 34(310), 312. https://doi.org/10.2307/3611062

Takle, E. S., & Brown, J. M. (1978). Note on the Use of Weibull Statistics to Characterize Wind-Speed Data. Journal of Applied Meteorology, 17(4), 556–559. https://doi.org/10.1175/1520-0450(1978)017%3C0556:notuow%3E2.0.co;2

Ucar, A., & Balo, F. (2009). Evaluation of wind energy potential and electricity generation at six locations in Turkey. Applied Energy, 86(10), 1864–1872. https://doi.org/10.1016/j.apenergy.2008.12.016

Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18(3), 293–297. https://doi.org/10.1115/1.4010337

Yürüşen, N. Y., & Melero, J. J. (2016). Probability density function selection based on the characteristics of wind speed data. Journal of Physics: Conference Series, 753, 032067. https://doi.org/10.1088/1742-6596/753/3/032067

Published

2026-01-30

How to Cite

Otunla, T. A. (2026). Assessment of Wind Speed Distributions and Turbine Characteristics in Equatorial West Africa. Nigerian Journal of Physics, 35(1), 108-120. https://doi.org/10.62292/njp.v35i1.2026.481

How to Cite

Otunla, T. A. (2026). Assessment of Wind Speed Distributions and Turbine Characteristics in Equatorial West Africa. Nigerian Journal of Physics, 35(1), 108-120. https://doi.org/10.62292/njp.v35i1.2026.481