Energy Values of Titanium Hydride (TiH) Diatomic Molecule with Modified Kratzer Energy-Dependent Screened Coulomb Potential in the Presence of Magnetic and Aharonov-Bohm Flux Fields

Authors

  • Sunday Danladi Ishaya
    NNPC LIMITED
  • Yerima Jabil Yakubu
    University of Jos
  • Davou Christopher Lawrence
    University of Jos

Keywords:

Aharonov–Bohm (AB) flux, Energy-dependent screened Coulomb potential, Modified Kratzer potential, Slope parameter, Titanium Hydride (TiH) diatomic molecule

Abstract

In this study, the modified Kratzer energy-dependent screened Coulomb potential is analyzed in the presence of external magnetic and Aharonov–Bohm (AB) flux fields. The Schrödinger equation is solved using the Nikiforov–Uvarov Functional Analysis (NUFA) method, yielding closed-form expressions for the energy eigenvalues and the corresponding wavefunctions. The resulting solutions are applied to the Titanium Hydride (TiH) diatomic molecule to investigate how external fields and the slope parameter  which characterizes the rate at which the screening strength and potential shape vary with internuclear separation affect the molecular energy spectrum. The slope parameter plays a key role in determining the stiffness and depth of the effective potential: negative values () enhance attractive behavior and support both positive and negative bound-state energies; zero slope () produces only positive bound-state levels; and positive slope () alters the spacing of the spectrum by increasing the sensitivity of the energy levels to external-field perturbations. Numerical results show that external fields strongly influence degeneracy patterns in TiH. Magnetic fields remove degeneracy across , AB-flux fields create quasi-degeneracy, and the combined fields produce the most significant degeneracy lifting. Energy values consistently decrease with increasing vibrational quantum number . Special cases obtained by varying the magnetic quantum number and slope parameter reduce to the known modified Kratzer–Coulomb potential, and the resulting spectra agree well with available literature. These findings highlight the sensitivity of TiH molecular states to the slope parameter and external fields.

Dimensions

Aygun, M., Bayrak, O., Boztosun, I., & Sahin, Y. (2012). The energy eigenvalues of the Kratzer potential in the presence of a magnetic field. European Physical Journal D, 66, 35, 1–5. https://doi.org/10.1140/epjd/e2011-20319-5

Cetin, A. (2008). A Quantum Pseudodot system with a two-dimensional Pseudoharmonic Potential, Physics Letters A, 372(21), 3852-3856.https://doi.org/10.1016/j.physleta.2008.02.037

Edet, C. O., Okorie, U. S., Ngiangian, A. T., & Ikot, A. N. (2020). Bound state solutions of the Schrödinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian Journal of Physics, 94(4), 425–433. https://doi.org/10.1007/s12648-019-01477-9

Edet, C. O., Khordad, R., Ettah, E. B., Aljunid, S. A., Endut, R., Ali, N., Asjad, M., Ushie, P. O., & Ikot, A. N. (2022). Magneto-transport and thermal properties of TiH diatomic molecules under the influence of magnetic and Aharonov–Bohm (AB) fields. Scientific Reports, 12, 15430. https://doi.org/10.1038/s41598-022-19396-x

Eshghi, M., & Mehraban, H. (2017). Study of a 2D charged particle confined by magnetic and Aharonov–Bohm flux fields under the radial scalar power potential. European Physical Journal Plus, 132(3), 121. https://doi.org/10.1140/epjp/i2017-11379-x

Falaye, B. J., Ikhdair, S. M., & Hamzavi, M. (2015). Formula method for bound state problems. Few-Body Systems, 56(1), 63–78. https://doi.org/10.1007/s00601-014-0937-9

Ferkous, N., Boultif, A. & Sifour, M. (2019). On the Spin-1/2 Aharonov-Bohm Problem for Modified Poschl-Teller Potential, Physical Regularization and Self-Adjoint Extensions. The European Physical Journal Plus, 134, 258. https://doi.org/10.1140/epjp/i2019-12608-0

Ferkous, N. & Bounames, A. (2013). 2D Pauli Equation with Hulthen Potential in the Presence of Aharonov-Bohm Effect. Communication Theoretical Physics, 59(6), 679-683. https://ctp.itp.ac.cn/EN/Y2013/V59/106/679

Flügge, S. (1971). Practical quantum mechanics II. Springer.

Greene, R. L., & Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. Physical Review A, 14, 2363–2366. https://doi.org/10.1103/PhysRevA.14.2363

Horchani, R., Al-Aamri, H., Al-Kindi, N., Ikot, A. N., Okorie, U. S., Rampho, G. J. & Jelassi, H. (2021). Energy Spectra and Magnetic Properties of Diatomic Molecules in the Presence of Magnetic and AB Fields with the Inversely Quadratic Yukawa Potential. European Physical Journal D, 75:36, 1-13. https://doi.org/10.1140/epjd/s10053-021-00038-2

Ibekwe, E. E., Okorie, U. S., Emah, J. P., Iyang, E. P., & Ekong, S. A. (2021). Mass spectrum of heavy quarkonium for screened-Kratzer potential using series expansion method. European Physical Journal Plus, 136, 87. https://doi.org/10.1140/epjp/s13360-021-01090-y

Ikhdair, S. M., & Hamzavi, M. (2012). A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov–Bohm fields. Physica B: Condensed Matter, 407(21), 4198–4207. https://doi.org/10.1016/j.physb.2012.07.004

Ikhdair, S. M., Hamzavi, M., & Sever, R. (2012). Spectra of cylindrical quantum dots: The effect of electrical and magnetic fields together with AB flux field. Physica B: Condensed Matter, 407(23), 4523–4529. https://doi.org/10.1016/j.physb.2012.08.013

Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2020). Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharonov–Bohm fields. Heliyon, 6, e03738. https://doi.org/10.1016/j.heliyon.2020.e03738

Ikot, A. N., Okorie, U. S., Amadi, P. O., Edet, C. O., Rampho, G. J., & Sever, R. (2021). The Nikiforov–Uvarov functional analysis method: A new approach for solving exponential-type potentials. Few-Body Systems, 62, 9.

https://doi.org/10.1007/s00601-021-01593-5

Jia, C. S., Zhang, L. H., & Wang, C. W. (2017). Thermodynamic properties for the lithium dimer. Chemical Physics Letters, 667, 211–215. https://doi.org/10.1016/j.cplett.2016.11.059

Karayer, H., Demirha, D., & Buyukkilic, F. (2015). Extension of Nikiforov–Uvarov method for the solution of Heun equation. Journal of Mathematical Physics, 56, 063504. https://doi.org/10.1063/1.4922601

Khordad, R. (2010). Simultaneous effects of temperature and pressure on the donor binding energy in a V-groove quantum wire. Superlattices and Microstructures, 47(3), 422–431.

Nikiforov, A. F., & Uvarov, V. B. (1988). Special functions of mathematical physics. Birkhäuser.

Onyenegecha, C. P., Njoku, I. J., Omame, A., Okereke, C. J. & Onyeocha, E. (2021). Dirac Equation and Thermodynamic Properties with Modified Kratzer Potential. Heliyon, 7, e08023, 1-8. https://doi.org/10.1016/j.heliyon.2021.e08023

Oyewumi, K. J., Falaye, B. J., Onate, C. A., Oluwadare, O. J., & Yahaya, W. A. (2014). Thermodynamic properties and approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model. Molecular Physics, 112, 127–141. https://doi.org/10.1080/00268976.2013.804960

Purohit, K. R., Parmar, R. H., & Rai, A. K. (2020). Bound state solution and thermodynamical properties of the screened cosine Kratzer potential under the influence of magnetic and Aharonov–Bohm flux fields. Annals of Physics, 168335. https://doi.org/10.1016/j.aop.2020.168335

Rampho, G. J., Ikot, A. N., Edet, C. O., & Okorie, U. S. (2020). Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. Molecular Physics, e1821922. https://doi.org/10.1080/00268976.2020.1821922

Serrano, F. A., Gu, X. Y. & Dong, S. H. (2010). Qiang–Dong proper quantization rule and its applications to exactly solvable quantum systems. Journal of mathematical physics, 51(8), 082103. https://doi.org/10.1063/1.3466802

Sever, R., Tezcan, C., Yesiltas, Ö., & Bucurgat, M. (2008). Exact solution of effective mass Schrödinger equation for the Hulthén potential. International Journal of Theoretical Physics, 47(9), 2243–2248. https://doi.org/10.1007/s10773-008-9656-7

Tezcan, C., & Sever, R. (2009). A general approach for the exact solution of the Schrödinger equation. International Journal of Theoretical Physics, 48(2), 337–350. https://doi.org/10.1007/s10910-007-9233-y

Published

2026-01-30

How to Cite

Ishaya, S. D., Yakubu, Y. J., & Lawrence, D. C. (2026). Energy Values of Titanium Hydride (TiH) Diatomic Molecule with Modified Kratzer Energy-Dependent Screened Coulomb Potential in the Presence of Magnetic and Aharonov-Bohm Flux Fields. Nigerian Journal of Physics, 35(1), 142-154. https://doi.org/10.62292/njp.v35i1.2026.476

How to Cite

Ishaya, S. D., Yakubu, Y. J., & Lawrence, D. C. (2026). Energy Values of Titanium Hydride (TiH) Diatomic Molecule with Modified Kratzer Energy-Dependent Screened Coulomb Potential in the Presence of Magnetic and Aharonov-Bohm Flux Fields. Nigerian Journal of Physics, 35(1), 142-154. https://doi.org/10.62292/njp.v35i1.2026.476

Most read articles by the same author(s)