Angular-Dependent Sputtering and Implantation of Kr⁺ and Xe⁺ Ions in CoCrFeMnNi High-Entropy Alloy: A TRIM/SRIM Simulation Study

Authors

Keywords:

Plasma-facing components, Noble-gas ion, Preferential sputtering, Surface erosion, Radial projected range

Abstract

High-entropy alloys (HEAs) are increasingly considered for extreme-environment applications such as plasma-facing components and nuclear materials, where resistance to noble-gas ion bombardment is critical. This work presents a systematic TRIM/SRIM Monte Carlo investigation of 5–15 keV Kr⁺ and Xe⁺ ion interactions with the equiatomic CoCrFeMnNi (Cantor) alloy, with emphasis on the influence of incident angle (0°–89°). Longitudinal penetration depth and straggle decrease dramatically with increasing oblique angles, dropping to only a few atomic monolayers beyond 70°. Conversely, lateral and radial projected ranges and straggles rise strongly, reaching maximum values of ~65 Å and ~50 Å, respectively, for 15 keV Kr⁺ at near-grazing incidence. Total sputtering yields exhibit the classic angular dependence, peaking at 60°–70° and reaching 19 atoms/ion (Kr⁺) and 33–35 atoms/ion (Xe⁺) at 15 keV. Heavier Xe⁺ ions consistently produce 1.6–1.8 times higher yields than Kr⁺, while elemental yields reveal pronounced preferential sputtering in the order Mn > Ni > Co ≈ Fe > Cr, driven by differences in atomic mass and surface binding energy. The results agree quantitatively with established SRIM predictions and recent heavy-ion studies on transition-metal systems. These findings highlight the complex interplay of ion mass, incident angle, and target chemical complexity in HEAs, providing quantitative guidance for predicting surface erosion, near-surface implantation profiles, and compositional evolution of CoCrFeMnNi under divertor-relevant noble-gas exposure.

Author Biographies

Raymond Chivirter Abenga

Department of Pure and Applied Physics

Senior Lecturer

Richard K. Tyokyaa

Department of Mathematics

Senior Lecturer

Dimensions

Ahn, S. Y., Kim, D. G., Lee, J. A., Kim, E. S., Jeong, S. G., Kim, R. E., … Kim, H. S. (2023). Dynamic compression behavior of CoCrFeMnNi high-entropy alloy fabricated by direct energy deposition additive manufacturing. Journal of Alloys and Compounds, 960, 170602. https://doi.org/10.1016/J.JALLCOM.2023.170602

Bandourko, V., Jimbou, R., Nakamura, K., & Akiba, M. (1998). Tungsten self-sputtering yield with different incidence angles and target temperatures. Journal of Nuclear Materials, 258–263(PART 1 A), 917–920. https://doi.org/10.1016/S0022-3115(98)00079-8

Chen, D., Tong, Y., Wang, J., Han, B., Zhao, Y. L., He, F., & Kai, J. J. (2018). Microstructural response of He+ irradiated FeCoNiCrTi0.2 high-entropy alloy. Journal of Nuclear Materials, 510, 187–192. https://doi.org/10.1016/j.jnucmat.2018.08.006

Chen, Y., Chen, D., Weaver, J., Gigax, J., Wang, Y., Mara, N. A., … Li, N. (2023). Heavy ion irradiation effects on CrFeMnNi and AlCrFeMnNi high entropy alloys. Journal of Nuclear Materials, 574, 154163. https://doi.org/10.1016/j.jnucmat.2022.154163

Gianelle, M. A., Clapp, C., Kundu, A., & Chan, H. M. (2022). Solid state processing of the cantor derived alloy CoCrFeMnNi by oxide reduction. Results in Materials, 14(March), 100286. https://doi.org/10.1016/j.rinma.2022.100286

Hou, Y., Dou, B., Xie, C., Sun, F., Rioual, S., Lescop, B., … Vivier, V. (2025). On the corrosion resistance of the CoCrFeMnNi high entropy alloys in chloride-containing sulfuric acid solutions. Applied Surface Science, 681, 161487. https://doi.org/10.1016/j.apsusc.2024.161487

Ivanov, I. A., Ryskulov, A., Kurakhmedov, A., Kozlovskiy, A., Shlimas, D., Zdorovets, M. V., … Ke, J. (2021). Radiation swelling and hardness of high-entropy alloys based on the TiTaNbV system irradiated with krypton ions. Journal of Materials Science: Materials in Electronics, 32(23), 27260–27267. https://doi.org/10.1007/s10854-021-07095-8

Kim, Y. K., Yang, S., & Lee, K. A. (2020). Superior Temperature-Dependent Mechanical Properties and Deformation Behavior of Equiatomic CoCrFeMnNi High-Entropy Alloy Additively Manufactured by Selective Laser Melting. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-65073-2

Lopez-Cazalilla, A., Jussila, J., Nordlund, K., & Granberg, F. (2023). Effect of surface morphology on Tungsten sputtering yields. Computational Materials Science, 216(October 2022). https://doi.org/10.1016/j.commatsci.2022.111876

Martinie, S., Saad-Saoud, T., Moindjie, S., Munteanu, D., & Autran, J. L. (2014). Behavioral modeling of SRIM tables for numerical simulation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 322, 2–6. https://doi.org/10.1016/j.nimb.2013.12.023

Nakamura, H., Saito, S., & Ito, A. M. (2016). Sputtering Yield of Noble Gas Irradiation onto Tungsten Surface. Journal of Advanced Simulation in Science and Engineering, 3(2), 165–172. https://doi.org/10.15748/jasse.3.165

Nishijima, D., Baldwin, M. J., Doerner, R. P., & Yu, J. H. (2011). Sputtering properties of tungsten ‘ fuzzy ’ surfaces. 415, 96–99. https://doi.org/10.1016/j.jnucmat.2010.12.017

Oyewande, O. E., & Akinpelu, A. (2018a). An ion-beam surface sputtering approach to the quest for lead-free metal halide perovskite for solar cells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 434, 102–108. https://doi.org/10.1016/j.nimb.2018.08.041

Oyewande, O. E., & Akinpelu, A. (2018b). Projected Range and Sputter Yield of Ne + and Ar + in the Sputtering of Lead and Tin Perovskites. IOP Conference Series: Earth and Environmental Science, 173(1), 012045. https://doi.org/10.1088/1755-1315/173/1/012045

Oyewande, O. E., Babalola, I. B., & Aizebeokhai, A. P. (2019). Trends of Sputtering Parameters in Monte Carlo Simulations of Rare Gas Impingement of GaSb, AlSb and InSb. Journal of Physics: Conference Series, 1299(1), 012112. https://doi.org/10.1088/1742-6596/1299/1/012112

Sadeghilaridjani, M., Ayyagari, A., Muskeri, S., Hasannaeimi, V., Salloom, R., Chen, W.-Y., & Mukherjee, S. (2020). Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. Journal of Nuclear Materials, 529, 151955. https://doi.org/10.1016/j.jnucmat.2019.151955

Ziegler, J. F., Ziegler, M. D., & Biersack, J. P. (2010). SRIM - The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268(11–12), 1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

Published

2026-01-08

How to Cite

Atsue, T., Abenga, R. C., & Tyokyaa, R. K. (2026). Angular-Dependent Sputtering and Implantation of Kr⁺ and Xe⁺ Ions in CoCrFeMnNi High-Entropy Alloy: A TRIM/SRIM Simulation Study. Nigerian Journal of Physics, 35(1), 84-90. https://doi.org/10.62292/njp.v35i1.2026.475

How to Cite

Atsue, T., Abenga, R. C., & Tyokyaa, R. K. (2026). Angular-Dependent Sputtering and Implantation of Kr⁺ and Xe⁺ Ions in CoCrFeMnNi High-Entropy Alloy: A TRIM/SRIM Simulation Study. Nigerian Journal of Physics, 35(1), 84-90. https://doi.org/10.62292/njp.v35i1.2026.475