A Refined AQM Approach for Providing an Improved Performance in Communication Networks

Authors

  • Samuel O. Hassan
    Olabisi Onabanjo University, Ago-Iwoye
  • Fatimah Adamu-Fika
    Air Force Institute of Technology, Kaduna
  • Gloria Y. Amadi
    Rivers State College of Health Sciences & Management Technology
  • Vivian O. Nwaocha
    National Open University of Nigeria image/svg+xml
  • Adekunle A. Adeyelu
    Rev. Fr. Moses Orshio Adasu University
  • Olalere A. Abass
    Olabisi Onabanjo University image/svg+xml
  • Olakunle O. Solanke
    Olabisi Onabanjo University, Ago-Iwoye

Keywords:

Active queue management, Dropping probability, Performance evaluation, RED algorithm, Network congestion

Abstract

Effective queue management for making certain of obtaining an improved network quality of service (QoS) is becoming a crucial challenge to the Internet owing to enormous increase in real-time communications. The widely reputed Random Early Detection (RED) and its offshoot amendment (Three-section RED, TRED) Active Queue Management (AQM) algorithms are considered inefficient for handling high congested network settings, leading to large end-to-end delay. In this paper, we propose a more sophisticated RED-based AQM design that leveraged TRED. We call this new scheme Ref-RED (an abbreviation of ‘Refined Random Early Detection’). Experimental investigations in ns-3 simulator demonstrated that Ref-RED's packet dropping strategy is more belligerent as it actively drops packets at heavy-load congested network, leading to the appreciable performance improvement.

Dimensions

Abdel-Jaber, H. (2025). Performance Analysis of Diverse Active Queue Management Algorithms. International Journal of Networked and Distributed Computing, 13(1), 1–32, https://doi.org/10.1007/s44227-025-00056-1

Abdel-Jaber, H., Thabtah, F., and Woodward, M. (2015). Modeling discrete-time analytical models based on random early detection: Exponential and linear. International Journal of Modeling, Simulation, and Scientific Computing, 6(3), 1550028-1– 1550028-22, https://doi.org/10.1142/S1793962315500282

Abdel-Jaber, H. (2020). An exponential active queue management method based on random early detection. Journal of Computer Networks and Communications, 2020, 1–11, https://doi.org/10.1155/2020/8090468.

Abu-Shareha, A. A. (2019). Controlling delay at the router buffer using modified random early detection. International Journal of Computer Networks and Communications (IJCNC), 11(6), 63–75, https://doi.org/10.5121/ijcnc.2019.11604.

Adamu, A., Surajo, Y. and Jafar, M. T. (2021). Sared: Self-adaptive active queue management scheme for improving quality of service in network systems, Journal of Computer Science, 22(2), 253–267, https://doi.org/10.7494/csci.2021.22.2.4020.

Ali, I., Hong, S. and Cheung, T. (2024). Quality of Service and Congestion Control in Service-Defined Networking Using Policy-Based Routing. Applied Sciences, 14, 9066, https://doi.org/10.3390/app14199066.

Bie, Y., Li, Z., Hu, Z. and Chen, J. (2022). Queue Management Algorithm for Satellite Network Based on Traffic Prediction. IEEE Access, 10, 54313–54324, https://doi.org/10.1109/ACCESS.2022.3163519

Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G., Patridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., and Zhang, L., “Recommendations on Queue Management and Congestion Avoidance in the Internet” RFC 2309, (1998).

Chen, L., Wang, X., and Han, Z. (2004). Controlling Chaos in Internet Congestion Control Model. Chaos, Solitons and Fractals, 21(1), 81–91, https://doi.org/10. 1016/j.chaos.2003.09.037

Chydzinski, A., and Adamczyk, B. (2023). On the Influence of AQM on Serialization of Packet Losses. Sensors, 23(4), 2197, https://doi.org/10.3390/s23042197

Feng, C. W., Huang, L. F., Xu, C., and Chang, Y. C. (2017). Congestion control scheme performance analysis based on nonlinear red. IEEE Systems Journal, 11(4), 2247–2254, https://doi.org/10.1109/JSYST.2014.2375314.

Floyd, S. (2000). Recommendation on using the gentle−variant of red. Available on: https://www.icir.org/floyd/red/gentle.html.

Floyd, S., and Jacobson, V. (1993). Random early gateway for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413, https://doi.org/10.1109/90.251892.

Foundation, N. S. The network simulator - ns-3, Available on: https://www.nsnam.org. Last accessed: 25 October 2025

Giacomoni, L., Benny, B. and Parisis, G. (2023). RayNet: A Simulation Platform for Developing Reinforcement Learning-Driven Network Protocols, arXiv:2302.04519v1[cs.NI], pp. 1–24, , https://doi.org/10.48550/arXiv.2302.04519.

Gim´enez, A., Murcia, A., Amig´o, J. M., Mart´ınez-Bonastre, O., and Valero, J. (2022). New red-type tcp-aqm algorithms based on beta distribution drop functions, arXiv:2201.01105v1[cs.NI], https://doi.org/10.48550/arXiv.2201.01105

Hamadneh, N., Dixon, M., Cole, P. and Murray, D. (2011). A Third Drop Level for TCP-RED Congestion Control Strategy. World Academy of Science, Engineering and Technology, 8(1), 892–896,.

Hassan, S. O. (2022). RED-LE: A Revised Algorithm for Active Queue Management. Journal of Telecommunications and Information Technology, (2), 91–97, https://doi.org/10.26636/jtit.2022.160022.

Hassan, S. O., Nwaocha, V. O., Rufai, A. U., Odule, T. J., Enem, T. A., Ogundele, L. A., and Usman, S. A. (2022). Random Early Detection-Quadratic Linear: An Enhanced Active Queue Management Algorithm. Bulletin of Electrical Engineering and Informatics, 11(4), 2262–2272, https://doi.org/10.11591/eei.v11i4.3875

Hassan, S. O., Rufai, A. U., Ajaegbu, C., and Ayankoya, F. (2022). DL-RED: a RED-based Algorithm for Routers. International Journal of Computer Applications in Technology, 70(3/4), 244–253, https://doi.org/10.1504/IJCAT.2022.10053495

Hassan, S. O., Rufai, A. U., Agbaje, M. O., Enem, T. A., Ogundele, L. A. and Usman, S. A. (2022). Improved Random Early Detection Congestion Control Algorithm for internet routers. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 384–395, https://doi.org/10.11591/ijeecs.v28.i1.pp384-395.

Hassan, S. and Rufai, A. (2023). Modified Dropping - Random Early Detection (MD-RED): a Modified Algorithm for Controlling Network Congestion. International Journal of Information Technology, 15(3), 1499–1508, https://doi.org/10.1007/s41870-023-01201-1.

Hassan, S. O., Solanke, O. O., Odule, T. J., Adesina, A. O., Usman, S. A. and Ayinde, S. A. (2024). AmRED and RED-QE: Redesigning Random early Detection Algorithm. Telecommunication Systems, 85(2), 263–275, https://doi.org/10.1007/s11235-023-01082-6.

Hassan, S. O., Rufai, A. U., Nwaocha, V. O., Ogunlere, S. O., Adegbenjo, A. A., Agbaje, M. O. and Enem, T. A. (2023). Quadratic Exponential Random Early Detection: a New Enhanced Random Early Detection-Oriented Congestion Control Algorithm for Routers. International Journal of Electrical and Computer Engineering, 13(1), 669–679, https://doi.org/10.11591/ijece.v13i1.pp669-679

Høiland-Jørgensen, T., Täht, D., and Morton, J. (2018). Piece of Cake: A Comprehensive Queue Management Solution for Home Gateways. In Proceedings of 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 37-42

Imputato, P., Avallone, S., Tahiliani, M. P., and Ramakrishnan, G. (2020). Revisiting design choices in queue disciplines: The PIE case. Computer Networks, 171(22), 107136, https://doi.org/10.1016/j.comnet.2020.107136

Jafri, S. T. A., Ahmed, I., and Ali, S. (2022). Queue-Buffer Optimization Based on Aggressive Random Early Detection in Massive NB-IoT MANET for 5G Applications, Electronics, 11(18), 1–18, https://doi.org/10.3390/electronics11182955

Jian, V., Mittal, V., Shravya, K. S., and Tahiliani, M. P. (2018). Implementation and Validation of BLUE and PI Queue. Simulation Modelling Practice and Theory, 84(22), 19–37, https://doi.org/10.1016/j.simpat.2018.01.002

Kato, K., Kato, H., Asahara, H., Ito, D., and Kousaka, T. (2023). Effects on Random Early Detection of the Packet Drop Probability Function with an Adjustable Nonlinearity. Nonlinear Theory and Its Applications (NOLTA), 14(2), 193–206, https://doi.org/10.1587/nolta.14.193.

Kaur, N., and Singhai, R. (2019). Congestion control scheme using network coding with local route assistance in mobile adhoc network. International Journal of Computer Applications in Technology, 60(3), 242–253, https://doi.org/10.1504/ijcat.2019.100298

Kumhar, C., Kumar, A. and Kewat, A. (2021). QRED: an Enhancement Approach for Cngestion Control in Network Communication. International Journal of Information Technology, 13(1), 221–227, https://doi.org/10.1007/s41870-020-00538-1.

Long, C., Zhao, B. M, Guan, X. and Yang, J. (2005). The Yellow Active Queue Management Algorithm. Computer Networks, 47(4), 525–550, https://doi.org/10.1016/j.comnet.2004.09.006.

Mahajan, M., and Singh, T. P. (2014). The Modified Gausian Function for Congestion Avoidance in Mobile Ad Hoc Networks. International Journal of Computer Applications, 91(6), 39–44, https://doi.org/10.5120/15889-5112

Nichols, K. and Jacobson, V. (2012). Controlling Queue Delay. Communications of the ACM, 55(7), 42-50.

Pan, C., Zhang, S., Zhao, C., Shi, H., Kong, Z., and Cui, X. (2022). A Novel Active Queue Management Algorithm Based on Average Queue Length Change Rate. IEEE Access, 10, 75558–75570, https://doi.org/10.1109/ACCESS.2022.3189183

Pan, R., Natarajan, P., Piglione, C., Prabhu, M. S., Subramanian, V., Baker, F., and VerSteeg, B. (2013). PIE: A Lightweight Control Scheme to Address the Bufferbloat Problem. In Proceedings IEEE 14th International Conference on High Performance Switching and Routing (HPSR), pp. 148-155.

Patel, S. and Karmeshu. (2019). A New Modified Dropping Function for Congested AQM Networks. Wireless Personal Communications, 104(1), 37–55, https://doi.org/10.11007/s11277-018-6007-8

Paul, A. K., Kawakami, H., Tachibana, A., and Hasegawa, T. (2016). An aqm based congestion control for enb rlc in 4g/lte network. Proceedings of the IEEE Canandian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5, https://doi.org/10.1109/CCECE.2016.7726792.

Pei, L., Wu, F., and Wang, S. (2021). Periodic, quasi-periodic and chaotic oscillations in two heterogeneous aimd/red network congestion models with state-dependent roundtrip delays. International Journal of Bifurcation and Chaos, 31(6), 2150124-1– 2150124-21, https://doi.org/10.1142/S0218127421501248.

Prabhavat, S. and Varakulsiripunth, R. (2004). Performance Improvement on RED Based Gateway in TCP Communication Network. In Proceedings of the International Conference on Control, Automation Systems, 782–787.

Ryu, S., Rump, C., and Qiao, C. (2003). Advances in Internet Congestion Control. IEEE Communications Surveys and Tutorials, 5(1), 28-39, https://doi.org/10. 1109/COMST.2003.5342228

Sumannapong, S. Atsawaraungsuk, K. Somsuk and P. Chaichitwanidchakol. (2025). FaCoCo-RED: A Fast Response Congestion Control Mechanism for Constrained Application Protocol. Electronics, 14, https://doi.org/10.3390/electronics14010028.

Suwannapong, C., and Khunboa, C. (2019). Congestion Control in CoAP Observe Group Communication. Sensors, 19(3433), 1–14, https://doi.org/10.3390/s19153433

Thiruchelvi, G., and Raja, J. (2008). A Survey On Active Queue Management Mechanisms. International Journal of Computer Science and Network Security, 8(12), 130–145.

Zhou, K., Yeung, K. L., and Li, V. O. K. (2006). Nonlinear red: A simple yet efficient active queue management scheme. Journal of Computer Networks, 50(18), 3784–3794, https://doi.org/10.1016/j.comnet.2006.04.007.

Zhu, H., Sun, H., Jiang, Y., He, G., Zhang, L. and Lu, Y. (2023). A Sketch-Based Fine-Grained Proportional Integral Queue Management Method. Axioms, 12, 814, https://doi.org/10.3390/axioms12090814.

Published

2026-01-08

How to Cite

Hassan, S. O., Adamu-Fika, F., Amadi, G. Y., Nwaocha, V. O., Adeyelu, A. A., Abass, O. A., & Solanke, O. O. (2026). A Refined AQM Approach for Providing an Improved Performance in Communication Networks. Nigerian Journal of Physics, 35(1), 49-60. https://doi.org/10.62292/njp.v35i1.2026.457

How to Cite

Hassan, S. O., Adamu-Fika, F., Amadi, G. Y., Nwaocha, V. O., Adeyelu, A. A., Abass, O. A., & Solanke, O. O. (2026). A Refined AQM Approach for Providing an Improved Performance in Communication Networks. Nigerian Journal of Physics, 35(1), 49-60. https://doi.org/10.62292/njp.v35i1.2026.457