In Silico Investigations of the Performance Characteristics of Agbis2 Solar Cell using Solar Cell Capacitance Simulator – 1 Dimension (SCAPS-1D)

Authors

  • Muteeu A. Olopade
    University of Lagos, Nigeria
  • Soko Swaray
    Department of Physics, Fourah Bay College, University of Sierra Leone, Sierra Leone
  • Abdulai M. Feika
    University of Sierra Leone image/svg+xml

Keywords:

Spiro-OMeTAD, AgBiS2, Defect density, Temperature, Photovoltaic

Abstract

The research presents a theoretical investigation of a layered structure of ITO/ZnO/AgBiS2/Spiro OMeTAD/MoO3/Ag of AgBiS2 photovoltaic cells. The top layer is composed of indium tin oxide (ITO)  as a window layer, while intrinsic ZnO serves as the electron transport layer (ETL), a p-type AgBiS2 absorber layer followed by two distinct hole-transport layers (HTLs), namely spiro-OMeTAD and molybdenum trioxide (MoO3) and (Ag) serving as the back contact. This study aims to examine the effects of Spiro-OMeTAD HTL on the efficiency of an AgBiS2-based heterostructure solar cell. The consequences of optimising various parameters, such as absorber thickness, absorber defect density, molybdenum trioxide (MoO3) thickness, and temperature on the device efficiency were studied. The initial model achieved an efficiency of 9.62%, further enhanced to 11.86% by incorporating MoO3 as a secondary hole transport layer. Optimising the MoO3 thickness yielded a peak efficiency of 12.40%. Increasing the absorber thickness led to improved light absorption and carrier generation, with the highest performance of 14.16% achieved at 200 nm. Defect density variations from 1010 to 1020 cm-3 had a minimal impact on device performance, indicating the device's resilience to moderate defect changes. Temperature studies revealed an optimal operating range below 310 K, with the highest efficiency of 15.34% obtained at 280 K. These findings provide valuable understanding into the potential of AgBiS2-based solar cells and the key parameters for performance optimisation. Hence, the device's resilience to moderate defect changes and the importance of temperature management for maximising the efficiency of AgBiS2-based solar cells.

Dimensions

Abdelaziz, S., Zekry, A., Shaker, A., & Abouelatta, M. (2020). Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Optical Materials, 101, 109738. https://doi.org/10.1016/j.optmat.2020.109738

Alam, I., & Ashraf, M. A. (2024). Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance. Energy Sources, Part A: Recovery, Utilisation, and Environmental Effects, 46(1), 17080–17096. https://doi.org/10.1080/15567036.2020.1820628

Avigad, E., & Etgar, L. (2018). Studying the Effect of MoO3 in Hole-Conductor-Free Perovskite Solar Cells. ACS Energy Letters, 3(9), 2240–2245. https://doi.org/10.1021/acsenergylett.8b01169

Banik, S., Das, A., Das, B. K., & Islam, N. (2024). Numerical simulation and performance optimization of a lead-free inorganic perovskite solar cell using SCAPS-1D. Heliyon, 10(1), e23985. https://doi.org/10.1016/j.heliyon.2024.e23985

Chang, W., Tian, H., Fang, G., Guo, D., Wang, Z., & Zhao, K. (2019). Simulation of innovative high efficiency perovskite solar cell with Bi-HTL: NiO and Si thin films. Solar Energy, 186, 323–327. https://doi.org/10.1016/j.solener.2019.05.017

Jobsis, H. J., Gao, L., Reponen, A.-P. M., VanOrman, Z. A., Rijpers, R. P. P. P. M., Wang, H. I., Feldmann, S., & Hutter, E. M. (2024). The Effect of Charge Carrier Cooling on the Ultrafast Carrier Dynamics in Cs$_2$AgBiBr$_6$ Thin Films (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2412.14929

Kashem, M. T. B., & Esha, S. A. (2025). A Comprehensive Computational Photovoltaic Study of Lead-free Inorganic NaSnCl$_3$-based Perovskite Solar Cell: Effect of Charge Transport Layers and Material Parameters (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2503.02845

Khattak, Y. H., Baig, F., Ullah, S., Marí, B., Beg, S., & Ullah, H. (2018). Enhancement of the conversion efficiency of a thin-film kesterite solar cell. Journal of Renewable and Sustainable Energy, 10(3), 033501. https://doi.org/10.1063/1.5023478

Lin, L., Jiang, L., Li, P., Qiu, Y., & Yan, Q. (2019). Numerical analysis of inverted-structure perovskite solar cell based on all-inorganic charge transport layers. Journal of Photonics for Energy, 9(02), 1. https://doi.org/10.1117/1.JPE.9.024501

Nakamura, M., Nakamura, H., Ohsawa, T., Imura, M., Shimamura, K., & Ohashi, N. (2015). AgBiS2 single crystal grown using slow cooling method and its characterization. Journal of Crystal Growth, 411, 1–3. https://doi.org/10.1016/j.jcrysgro.2014.10.042

Sayeem, S. A., Siddika, Mst. A., Basu, S. R., Mondal, B. K., & Hossain, J. (2024). Numerical Expedition on the Potential of AgBiS2 -Based Thin Film Solar Cells Employing Different Carrier Transport Layers. ACS Omega, 9(33), 35490–35502. https://doi.org/10.1021/acsomega.4c02375

Schwartz, D., Murshed, R., Larson, H., Usprung, B., Soltanmohamad, S., Pandey, R., Barnard, E. S., Rockett, A., Hartmann, T., Castelli, I. E., & Bansal, S. (2020). Air Stable, High‐Efficiency, Pt‐Based Halide Perovskite Solar Cells with Long Carrier Lifetimes. Physica Status Solidi (RRL) – Rapid Research Letters, 14(8), 2000182. https://doi.org/10.1002/pssr.202000182

Singh, P., & Ravindra, N. M. (2012). Temperature dependence of solar cell performance—An analysis. Solar Energy Materials and Solar Cells, 101, 36–45. https://doi.org/10.1016/j.solmat.2012.02.019

Sultan, Md. Z., Shahriar, A., Tota, R., Howlader, Md. N., Rodro, H. H., Akhy, M. J., & Rashik, Md. A. A. (2024). Numerical Study and Optimization of CZTS-Based Thin-Film Solar Cell Structure with Different Novel Buffer-Layer Materials Using SCAPS-1D Software. Energy and Power Engineering, 16(04), 179–195. https://doi.org/10.4236/epe.2024.164009

Tan, K., Lin, P., Wang, G., Liu, Y., Xu, Z., & Lin, Y. (2016). Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electronics, 126, 75–80. https://doi.org/10.1016/j.sse.2016.09.012

These, A., Koster, L. J. A., Brabec, C. J., & Le Corre, V. M. (2024). Beginner’s Guide to Visual Analysis of Perovskite and Organic Solar Cell Current Density–Voltage Characteristics. Advanced Energy Materials, 14(21), 2400055. https://doi.org/10.1002/aenm.202400055

Varshni, Y. P. (1967). Temperature dependence of the energy gap in semiconductors. Physica, 34(1), 149–154. https://doi.org/10.1016/0031-8914(67)90062-6

Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO nanostructured materials for emerging solar cell applications. RSC Advances, 10(70), 42838–42859. https://doi.org/10.1039/D0RA07689A

Xiao, Y., Wang, H., Awai, F., Shibayama, N., Kubo, T., & Segawa, H. (2021). Eco-Friendly AgBiS2 Nanocrystal/ZnO Nanowire Heterojunction Solar Cells with Enhanced Carrier Collection Efficiency. ACS Applied Materials & Interfaces, 13(3), 3969–3978. https://doi.org/10.1021/acsami.0c19435

Zeinidenov, A., Mukametkali, T., Ilyassov, B., Aimukhanov, A., & Valiev, D. (2021). The effect of MoO3 interlayer on electro-physical characteristics of the perovskite solar cells. Synthetic Metals, 281, 116903. https://doi.org/10.1016/j.synthmet.2021.116903

Zhang, H., Xia, Y., Zhang, Y., Ghorpade, U. V., He, M., Shin, S. W., Hao, X., & Suryawanshi, M. P. (2025). The Rise of Chalcohalide Solar Cells: Comprehensive Insights From Materials to Devices. Advanced Science, 12(19), 2413131. https://doi.org/10.1002/advs.202413131

Published

2025-09-22

How to Cite

Olopade, M. A., Swaray, S., & Feika, A. M. (2025). In Silico Investigations of the Performance Characteristics of Agbis2 Solar Cell using Solar Cell Capacitance Simulator – 1 Dimension (SCAPS-1D). Nigerian Journal of Physics, 34(3), 28-36. https://doi.org/10.62292/10.62292/njp.v34i3.2025.417

How to Cite

Olopade, M. A., Swaray, S., & Feika, A. M. (2025). In Silico Investigations of the Performance Characteristics of Agbis2 Solar Cell using Solar Cell Capacitance Simulator – 1 Dimension (SCAPS-1D). Nigerian Journal of Physics, 34(3), 28-36. https://doi.org/10.62292/10.62292/njp.v34i3.2025.417