Influence of Gas Flow Rate on the Properties of In2O3 Nanostructures Synthesized on Ni/Si Substrates using a Carbothermal Reduction Process at Atmospheric Pressure

Authors

  • Terwase Moses Aper
    Rev.Fr. Moses Orshio Adasu University
  • Jonathan Terseer Ikyumbur
    Rev.Fr. Moses Orshio Adasu University
  • Augustine A. McAsule
    Joseph Sarwuan Tarka University
  • Oluwatosin Samuel Obaseki
    Landmark University
  • Mrumun David Tyona
    Rev.Fr. Moses Orshio Adasu University

Keywords:

Indium oxide nanostructures, Carbothermal reduction, Atmospheric pressure, Crystallite size, Optical bandgap

Abstract

Indium oxide nanostructured films have been grown on Ni/Si substrates by a carbothermal reduction of In2O3 powder under the flow of a 1 % hydrogen balance nitrogen as carrier gas at atmospheric pressure. The properties of the microstructures were investigated by varying the gas flow rates between 100 and 250 sccm. The films' morphological, structural and optical properties were examined using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and UV-vis measurements. Investigation of the crystal structures revealed clear diffraction peaks in the XRD analysis corresponding to the body-centred crystal structure of the In2O3. The shape, crystallite size, and optical bandgap were observed to be influenced by the variation in the gas flow rates.

Dimensions

Abdulkadir, A., Abdul Aziz, A., & Pakhuruddin, M. Z. (2020). Properties of indium tin oxide on black silicon after post-deposition annealing for heterojunction solar cells. Results in Physics, 19, 103405. https://doi.org/10.1016/j.rinp.2020.103405

Ahmed, N. M., Sabah, F. A., Abdulgafour, H. I., Alsadig, A., Sulieman, A., & Alkhoaryef, M. (2019). The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13(February), 102159. https://doi.org/10.1016/j.rinp.2019.102159

Aper, T. M., Yam, F. K., & Beh, K. P. (2021). Materials Science in Semiconductor Processing Influence of temperature and nickel catalyst on the structural and optical properties of indium oxide nanostructured films synthesized by chemical vapor deposition technique. Materials Science in Semiconductor Processing, 132(April), 105925. https://doi.org/10.1016/j.mssp.2021.105925

Bel, R., Tahar, H., Ban, T., Ohya, Y., Takahashi, Y., Bel, R., Tahar, H., Ban, T., Ohya, Y., & Takahashi, Y. (1998). Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique. 2139, 126–129. https://doi.org/10.1063/1.366949

Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8(4), 123–134. https://doi.org/10.1007/s40094-014-0141-9

Chen, Y., Yang, S., Lu, K., & Aesar, A. (2020). Synthesis of High-Density Indium Oxide Nanowires with Low Electrical Resistivity. 1–7.

Cho, J.-S., Koh, S.-K., & Yoon, K. H. (2000). Microstructure and Electrical Properties of Indium Oxide Thin Films Prepared by Direct Oxygen Ion-Assisted Deposition. Journal of The Electrochemical Society, 147(3), 1065. https://doi.org/10.1149/1.1393314

Chong, S. K., Azizan, S. N. A., Chan, K. W., Nguyen, H. Q., Chiu, W. S., Aspanut, Z., Dee, C. F., & Rahman, S. A. (2013). Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment. Nanoscale Research Letters, 8(1), 1–9. https://doi.org/10.1186/1556-276X-8-428

Džimbeg-Malčić, V., Barbarić-Mikočević, Ž., & Itrić, K. (2011). Kubelka-Munk theory in describing optical properties of paper (I). Tehnički Vjesnik : Znanstveno-Stručni Časopis Tehničkih Fakulteta Sveučilišta u Osijeku, 18(1), 117–124.

Elam, J. W., Martinson, A. B. F., Pellin, M. J., & Hupp, J. T. (2006). Atomic layer deposition of in 2O 3 using cyclopentadienyl indium: A new synthetic route to transparent conducting oxide films. Chemistry of Materials, 18(15), 3571–3578. https://doi.org/10.1021/cm060754y

Girtan, M., & Folcher, G. (2003). Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process. Surface and Coatings Technology, 172(2–3), 242–250. https://doi.org/10.1016/S0257-8972(03)00334-7

Hassanien, A. S., & Akl, A. A. (2016). Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices and Microstructures, 89(January), 153–169. https://doi.org/10.1016/j.spmi.2015.10.044

Her, S. C., & Chang, C. F. (2017). Fabrication and characterization of indium tin oxide films. Journal of Applied Biomaterials and Functional Materials, 15(2), e170–e175. https://doi.org/10.5301/jabfm.5000345

Hoch, L. B., O’Brien, P. G., Jelle, A., Sandhel, A., Perovic, D. D., Mims, C. A., & Ozin, G. A. (2016). Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels. ACS Nano, 10(9), 9017–9025. https://doi.org/10.1021/acsnano.6b05416

Hosseini, a, Icli, K. C., & Güllü, H. H. (2013). Preparation and characterization of porous TiO 2 thin films by sol-gel method for Extremely Thin Absorber-ETA solar cell applications Çok ince Soğurucu – ETA g üneş gö zeler e uygulamaları için gö zenekli TiO 2 ince filmlerin sol-jel metodu ile ü retilmes. Turkish Journal of Science & Technology, 8(2), 69–79.

Karn, A., Kumar, N., & Aravindan, S. (2017). Chemical vapor deposition synthesis of novel indium oxide nanostructures in strongly reducing growth ambient. Journal of Nanostructures, 7(1), 64–76. https://doi.org/10.22052/jns.2017.01.008

King, P. D. C., Veal, T. D., Fuchs, F., Wang, C. Y., Payne, D. J., Bourlange, A., Zhang, H., Bell, G. R., Cimalla, V., Ambacher, O., Egdell, R. G., Bechstedt, F., & McConville, C. F. (2009). Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2 O3. Physical Review B - Condensed Matter and Materials Physics, 79(20), 1–10. https://doi.org/10.1103/PhysRevB.79.205211

Lotus, A. F., Feaver, R. K., Britton, L. A., Bender, E. T., Perhay, D. A., Stojilovic, N., Ramsier, R. D., & Chase, G. G. (2010). Characterization of TiO2-Al2O3 composite fibers formed by electrospinning a sol-gel and polymer mixture. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 167(1), 55–59. https://doi.org/10.1016/j.mseb.2010.01.027

Makhija, K. K., Ray, A., Patel, R. M., Trivedi, U. B., & Kapse, H. N. (2005). Indium oxide thin film based ammonia gas and ethanol vapour sensor. Bulletin of Materials Science, 28(1), 9–17. https://doi.org/10.1007/BF02711165

Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

Prathap, P., Subbaiah, Y. P. V, Devika, M., & Reddy, K. T. R. (2005). Investigations on the Structural Properties of Sprayed In 2 O 3 Films. 1021–1022.

Qurashi, A., Irfan, M. F., & Alam, M. W. (2010). In2O3 nanostructures and their chemical and biosensor applications. Arabian Journal for Science and Engineering, 35(1 C), 125–145.

Samanta, B., Dutta, D., & Ghosh, S. (2017). Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses. Physica B: Condensed Matter, 515(June 2016), 82–88. https://doi.org/10.1016/j.physb.2017.03.036

Saw, K. G., Aznan, N. M., Yam, F. K., Ng, S. S., & Pung, S. Y. (2015). New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films. PLoS ONE, 10(10), 1–17. https://doi.org/10.1371/journal.pone.0141180

Tuzluca, F. N., Yesilbag, Y. O., & Ertugrul, M. (2018). Synthesis of In 2 O 3 nanostructures with different morphologies as potential supercapacitor electrode materials. Applied Surface Science, 427, 956–964. https://doi.org/10.1016/j.apsusc.2017.08.127

Yahia, A., Attaf, A., Saidi, H., Dahnoun, M., Khelifi, C., Bouhdjer, A., Saadi, A., & Ezzaouia, H. (2019). Structural, optical, morphological and electrical properties of indium oxide thin films prepared by sol gel spin coating process. Surfaces and Interfaces, 14(October 2018), 158–165. https://doi.org/10.1016/j.surfin.2018.12.012

Published

2025-09-23

How to Cite

Aper, T. M., Ikyumbur, J. T., McAsule, A. A., Obaseki, O. S., & Tyona, M. D. (2025). Influence of Gas Flow Rate on the Properties of In2O3 Nanostructures Synthesized on Ni/Si Substrates using a Carbothermal Reduction Process at Atmospheric Pressure. Nigerian Journal of Physics, 34(2), 210-217. https://doi.org/10.62292/10.62292/njp.v34i2.2025.393

How to Cite

Aper, T. M., Ikyumbur, J. T., McAsule, A. A., Obaseki, O. S., & Tyona, M. D. (2025). Influence of Gas Flow Rate on the Properties of In2O3 Nanostructures Synthesized on Ni/Si Substrates using a Carbothermal Reduction Process at Atmospheric Pressure. Nigerian Journal of Physics, 34(2), 210-217. https://doi.org/10.62292/10.62292/njp.v34i2.2025.393

Most read articles by the same author(s)