Critical Examination of Gamow's Theory of Alpha Particle Decay
Main Article Content
Abstract
Gamow’s Theory of Alpha Particle Decay was initially formulated for a limited set of nuclei. In this study, the researchers extend the scope and assessed the applicability of the theory to a broader range of nuclides especially those with different proton and neutron compositions. Three objectives were formulated to undertake the research. The researcher utilized one-dimensional WKB approximation to calculate the probability of tunneling through the potential barrier, which is a simplification compared to other formulas. The Geiger-Nuttall law, which describes a dependence of the disintegration constant on the range of α-particles, was deduced using the Gamow theory describing the passage of the α-particles through the Coulomb barrier by the quantum mechanical tunneling effect. Ground-to-ground state α-transitions for α-active nuclides were analyzed based on their half-lives and their dependence on various factors. The study revealed that all α-active nuclides whose Z ranges between 70 to100 undergoes similar alpha decay processes.
Downloads
Article Details
References
Arati, D., & Basubeb, S. (2012). Prediction of Alpha Decay Energy and Decay Half-life for Unknown Super-heavy Nuclei Using Resonances of Exactly Solvable Alpha Nucleus Potential. Canadian Journal of Physics, 90(1), 53-60. https://doi.org/10.1139/p11–139
Azeez, O. K., Yahaya, W. A., & Awat, A. S. (2022). Prediction of the Alpha Decay Half-life using Modified Gamow-like Model. Physica Scripta, 97. https://doi.org/10.1088/14024896/ac619d
Beiser, A. (2002). Concepts of Modern Physics. McGraw-Hill.:https://doi.org/10.4236/ahs.2015.44023
Bjorken, J. D., & Orbach, H. S. (1980). The WKB Approximation for General Matrix Hamiltonians. SLAC-PUB-2481. https://doi.org/10.1103/physRev.23.243
Duarte, D., & Siegel, P. B. (2010). A Potential Model for Alpha-decay. American Journal of Physics, 78(9). https://doi.org/10.1119/1.3432752
Dzyublik, A. Y. (2021). Consistent theory of alpha decay. Ukrainian Journal of Physics, 66(5), ISSN 2071-0194.https://doi.org/10.15407/ujpe66.5.379
Grama, N. (2010). A New Uniform Asymptotic Approximation of 3-D Scattering Wave Function for a Central Potential. Journal of Advanced Research in Physics, 1(2), 021008.https://doi.org/10.1209/0295-5075/111/60004
Greiner, W. (2001). Quantum Mechanics; An Introduction. Fourth Edition. Springer, Berlin, Germany. pp. 181, 220 – 227. https://doi.org/10.4236/jqis.2011.12005
Griffiths, D. J. (1995). Introduction to Quantum Mechanics. Prentice Hall, New Jersey. pp. 256 – 260. www.cambridge.org/core/books/introduction-to-quantum-mechanics/990799CA07A83FC5312402AFC68603
Kowalski, A. M., & Luris, A. P. (2019). Implications of Non-extensively on Gamow Theory. Brazilian Journal of Physics https://doi.org/10.48550/arXVi.2205.04316
Kudryashov, V. V., & Vanne, Y. V. (2002). Explicit Summation of the Constituent WKB Series and New Approximate Wave Functions. Journal of Applied Mathematics, 2002, 265–275. https://doi.org/10.1155/S1110757X02112046.
Landau, L. D. and Lifshitz, E. M., (1991). Quantum Mechanics, Non-relativistic Theory, Volume 3 of Course of Theoretical Physics. Third edition, Pergamon Press, Oxford, England. pp. 119.
Lipkin, H. J. (1986). On Gamow’s Theory of Alpha Particle Decay. pp. 187-192.
Moradopour, H., Muhammad, J., Nasir, E., & Amir, H. Z. (2018). Implications of Non-Extensively on Gamow Theory. European Journal of Physics. https://doi.org/arXiv:2205.0431V1
Munkhsaikhan, J., Odsuren, O., & Gonchigdorij, K. (2020). Systematical Analysis of Alpha-active Nuclides. International Journal of Physics, 100(1), 012002. https://doi.org/10.22353/physics.v31i536.338
Newton, R. G. (2002). Quantum Physics: A Text for Graduate Student. Springer-Verlag New York. pp. 181.
Roger, H. S. (1986). Gamow’s Theory of Alpha Particle Decay. National University of Mongolia Journal Physics, pp. 147-186.
Sergeenko, M. N. (2002). Zeroth WKB Approximation in Quantum Mechanics. https://doi.org/10.48550/arXiv:quant-ph/0206179v1
Sergei, P. M. (2008). Bremsstrahlung during Alpha-decay Quantum Multipolar Model. Arxiv. Nuclear IEE Journal of Quantum Electronic Theory. https://doi.org/10.1103/physRevlett.80.4141.
Serot, O., Carjon, N., & Strottman, D. (1994). Transient Behavior in Quantum Tunneling Time Dependent Approach to Alpha-decay. North Holland Journal of Nuclear Physics, 569(3), 562-574. https://doi.org/10.1016/0375-9474(94)90319-0.
Trisan, H. (2012). The Theory of Alpha-decay. International Journal of Mathematics and Physics, 50(5), 206. https://doi.org/arXiv:1203.3821.
Yahaya, W. A. (2020). Alpha decay half-lives of 171−189Hg isotopes using Modified Gamow-like model and temperature dependent proximity potential. Journal of Nigerian Society of Physical Sciences, 2, 250-256.https://doi.org/10.4681/jnsps.2020.4.
Zdeb, A., Waida, M., & Pomorski, K. (2014). Alpha-decay half-life for Super-heavy Nuclei within Gamow-like Model. European Physical Journal, 45(2), 303. https://doi.org/10.5506/AphysPolB.45.303