Critical Examination of Gamow's Theory of Alpha Particle Decay

Main Article Content

Mohammed Imam Bukar
Nura Yakubu
Aliyu Adamu
Mamman Rawagana

Abstract

Gamow’s Theory of Alpha Particle Decay was initially formulated for a limited set of nuclei. In this study, the researchers extend the scope and assessed the applicability of the theory to a broader range of nuclides especially those with different proton and neutron compositions. Three objectives were formulated to undertake the research. The researcher utilized one-dimensional WKB approximation to calculate the probability of tunneling through the potential barrier, which is a simplification compared to other formulas.  The Geiger-Nuttall law, which describes a dependence of the disintegration constant on the range of α-particles, was deduced using the Gamow theory describing the passage of the α-particles through the Coulomb barrier by the quantum mechanical tunneling effect. Ground-to-ground state α-transitions for α-active nuclides were analyzed based on their half-lives and their dependence on various factors. The study revealed that all α-active nuclides whose Z ranges between 70 to100 undergoes similar alpha decay processes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bukar, M. I., Yakubu, N., Adamu, A., & Rawagana, M. (2024). Critical Examination of Gamow’s Theory of Alpha Particle Decay. Nigerian Journal of Physics, 33(S), 84–93. https://doi.org/10.62292/njp.v33(s).2024.227
Section
Articles

References

Arati, D., & Basubeb, S. (2012). Prediction of Alpha Decay Energy and Decay Half-life for Unknown Super-heavy Nuclei Using Resonances of Exactly Solvable Alpha Nucleus Potential. Canadian Journal of Physics, 90(1), 53-60. https://doi.org/10.1139/p11–139

Azeez, O. K., Yahaya, W. A., & Awat, A. S. (2022). Prediction of the Alpha Decay Half-life using Modified Gamow-like Model. Physica Scripta, 97. https://doi.org/10.1088/14024896/ac619d

Beiser, A. (2002). Concepts of Modern Physics. McGraw-Hill.:https://doi.org/10.4236/ahs.2015.44023

Bjorken, J. D., & Orbach, H. S. (1980). The WKB Approximation for General Matrix Hamiltonians. SLAC-PUB-2481. https://doi.org/10.1103/physRev.23.243

Duarte, D., & Siegel, P. B. (2010). A Potential Model for Alpha-decay. American Journal of Physics, 78(9). https://doi.org/10.1119/1.3432752

Dzyublik, A. Y. (2021). Consistent theory of alpha decay. Ukrainian Journal of Physics, 66(5), ISSN 2071-0194.https://doi.org/10.15407/ujpe66.5.379

Grama, N. (2010). A New Uniform Asymptotic Approximation of 3-D Scattering Wave Function for a Central Potential. Journal of Advanced Research in Physics, 1(2), 021008.https://doi.org/10.1209/0295-5075/111/60004

Greiner, W. (2001). Quantum Mechanics; An Introduction. Fourth Edition. Springer, Berlin, Germany. pp. 181, 220 – 227. https://doi.org/10.4236/jqis.2011.12005

Griffiths, D. J. (1995). Introduction to Quantum Mechanics. Prentice Hall, New Jersey. pp. 256 – 260. www.cambridge.org/core/books/introduction-to-quantum-mechanics/990799CA07A83FC5312402AFC68603

Kowalski, A. M., & Luris, A. P. (2019). Implications of Non-extensively on Gamow Theory. Brazilian Journal of Physics https://doi.org/10.48550/arXVi.2205.04316

Kudryashov, V. V., & Vanne, Y. V. (2002). Explicit Summation of the Constituent WKB Series and New Approximate Wave Functions. Journal of Applied Mathematics, 2002, 265–275. https://doi.org/10.1155/S1110757X02112046.

Landau, L. D. and Lifshitz, E. M., (1991). Quantum Mechanics, Non-relativistic Theory, Volume 3 of Course of Theoretical Physics. Third edition, Pergamon Press, Oxford, England. pp. 119.

Lipkin, H. J. (1986). On Gamow’s Theory of Alpha Particle Decay. pp. 187-192.

Moradopour, H., Muhammad, J., Nasir, E., & Amir, H. Z. (2018). Implications of Non-Extensively on Gamow Theory. European Journal of Physics. https://doi.org/arXiv:2205.0431V1

Munkhsaikhan, J., Odsuren, O., & Gonchigdorij, K. (2020). Systematical Analysis of Alpha-active Nuclides. International Journal of Physics, 100(1), 012002. https://doi.org/10.22353/physics.v31i536.338

Newton, R. G. (2002). Quantum Physics: A Text for Graduate Student. Springer-Verlag New York. pp. 181.

Roger, H. S. (1986). Gamow’s Theory of Alpha Particle Decay. National University of Mongolia Journal Physics, pp. 147-186.

Sergeenko, M. N. (2002). Zeroth WKB Approximation in Quantum Mechanics. https://doi.org/10.48550/arXiv:quant-ph/0206179v1

Sergei, P. M. (2008). Bremsstrahlung during Alpha-decay Quantum Multipolar Model. Arxiv. Nuclear IEE Journal of Quantum Electronic Theory. https://doi.org/10.1103/physRevlett.80.4141.

Serot, O., Carjon, N., & Strottman, D. (1994). Transient Behavior in Quantum Tunneling Time Dependent Approach to Alpha-decay. North Holland Journal of Nuclear Physics, 569(3), 562-574. https://doi.org/10.1016/0375-9474(94)90319-0.

Trisan, H. (2012). The Theory of Alpha-decay. International Journal of Mathematics and Physics, 50(5), 206. https://doi.org/arXiv:1203.3821.

Yahaya, W. A. (2020). Alpha decay half-lives of 171−189Hg isotopes using Modified Gamow-like model and temperature dependent proximity potential. Journal of Nigerian Society of Physical Sciences, 2, 250-256.https://doi.org/10.4681/jnsps.2020.4.

Zdeb, A., Waida, M., & Pomorski, K. (2014). Alpha-decay half-life for Super-heavy Nuclei within Gamow-like Model. European Physical Journal, 45(2), 303. https://doi.org/10.5506/AphysPolB.45.303