Upwelling Ion Observation from the Earth's Upper Atmosphere During EISCAT Svalbard Radar and FAST Satellite Conjunctions

Authors

Abstract

The loss of planetary atmospheres is due to the process of heavy ions depletion from the upper atmosphere. It is a significant source of magnetospheric plasma and plays an important role in altering global magnetospheric dynamics. A number of mechanisms are responsible for these outflows, which include electron precipitation, joule heating and other suprathermal energization. Seven events are considered at a time that the Fast Auroral SnapshoT (FAST) satellite and EISCAT Svalbard radar (ESR) simultaneously detected ion upflow, and this is validated by ground-based radars called, the Cooperative UK Twin Located Auroral Sounding System (CUTLASS). ESR and CUTLASS observations around the time of conjunctions are analyzed. The results show that ESR observed upwelling ion flux to be ~ 1013 m-2 s-1. Enhanced electron and ion temperatures are also observed at the time of these events. The dominant mechanism identified is the electron precipitation that results in an ambipolar electric field. The two striking events are the 2006-03-18 event that shows a distinct cusp signature indicated by CUTLASS and the 2002-01-20 event, which indicats a disturbed ionosphere due to data loss at ESR magnetic latitude.

Dimensions

Albarran, R. M., Zettergren, M., Rowland, D., Klenzing, J., and Clemmons, J. (2023). Kinetic modeling of ionospheric outflows in pressure cooker environments. Journal of Geophysical Research Space Physics, 129 (1). https://doi.org/10.1029/2023ja031658

Albarran, R. M., Varney, R. H., Pham, K., and Lin, D. (2024). Characterization of N+ abundances in the terrestrial polar wind using the multiscale Atmosphere‐Geospace environment. Journal of Geophysical Research Space Physics, 129(5). https://doi.org/10.1029/2023ja032311

Archer, W. E., Knudsen, D. J., Burchill, J. K., Patrick, M. R., and St‐Maurice, J. P. (2015). Anisotropic core ion temperatures associated with strong zonal flows and upflows. Geophysical Research Letters, 42(4), 981–986. https://doi.org/10.1002/2014gl062695

Axford, W. I. (1968). The polar wind and the terrestrial helium budget. Journal of Geophysical Research Atmospheres, 73(21), 6855–6859. https://doi.org/10.1029/ja073i021p06855

Baddeley, L., Lorentzen, D., Haaland, S., Heino, E., Mann, I., Miloch, W., Oksavik, K., Partamies, N., Spicher, A. and Vierinen, J., 2023. Space and atmospheric physics on Svalbard: a case for continued incoherent scatter radar measurements under the cusp and in the polar cap boundary region. Progress in Earth and Planetary Science, 10(1), p.53.

Carlson, C. W., Pfaff, R. F., and Watzin, J. G. (1998). The Fast Auroral SnapShOT (FAST) mission. Geophysical Research Letters, 25(12), 2013–2016. https://doi.org/10.1029/98gl01592

Carlson, C. W., McFadden, J. P., Turin, P., Curtis, D. W., and Magoncelli, A. (2001). The electron and ion plasma experiment for FAST. In Springer eBooks (pp. 33–66). https://doi.org/10.1007/978-94-010-0332-2_2

Chappell, C., Giles, B., Moore, T., Delcourt, D., Craven, P., and Chandler, M. (2000). The adequacy of the ionospheric source in supplying magnetospheric plasma. Journal of Atmospheric and Solar-Terrestrial Physics, 62(6), 421–436. https://doi.org/10.1016/s1364-6826(00)00021-3

Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J., and Walker, A. D. M. (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surveys in Geophysics, 28(1), 33–109. https://doi.org/10.1007/s10712-007-9017-8

David, T. W., Wright, D. M., Milan, S. E., Cowley, S. W. H., Davies, J. A., and McCrea, I. (2018). A Study of Observations of Ionospheric Upwelling Made by the EISCAT Svalbard Radar During the International Polar Year campaign of 2007. Journal of Geophysical Research: Space Physics, 123, 2192-2203, https://doi.org/10.1002/2017JA024802

David, T. W., Michael, C. M., Wright, D., Talabi, A. T., and Ajetunmobi, A. E. (2024). Ionospheric upwelling and the level of associated noise at solar minimum. Annales Geophysicae, 42(2), 349–354. https://doi.org/10.5194/angeo-42-349-2024

David, T. W., Michael, C. M., Wright, D. M., Talabi, A. T., Ajetunmobi, A. E., Awoyinka, T. D., and Kareem S. O. (2025). Case studies of drivers of ionospheric upwellings. Indian Journal of Physics, 9(2), 48–53, https://doi.org/10.1007/s12648-025-03582-4

Dessler, A.J. and Hanson, W.B. (1961). Possible energy source for the aurora. Astrophysical journal, 134, pp. 1024-1025

EISCAT Scientific Association, 01/13, 2014-last update, What is EISCAT. Available: https://www.eiscat.se/about/whatiseiscat_new [04/28, 2014].

Endo, M., Fujii, R., Ogawa, Y., Buchert, S. C., Nozawa, S., Watanabe, S., and Yoshida, N. (2000). Ion upflow and downflow at the topside ionosphere observed by the EISCAT VHF radar. Annales Geophysicae, 18(2), 170–181. https://doi.org/10.1007/s00585-000-0170-3

Foster, C., Lester, M., & Davies, J. A. (1998). A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996. Annales Geophysicae, 16(10), 1144–1158. https://doi.org/10.1007/s00585-998-1144-0

Ergun, R. E., Carlson, C. W., Mozer, F. S., Delory, G. T., Temerin, M., McFadden, J. P., Pankow, D., Abiad, R., Harvey, P., Wilkes, R., Primbsch, H., Elphic, R., Strangeway, R., Pfaff, R., and Cattell, C. A. (2001). The Fast Satellite Fields instrument. In Springer eBooks (pp. 67–91). https://doi.org/10.1007/978-94-010-0332-2_3

Gillies, R. G., Hussey, G. C., Sofko, G. J., and McWilliams, K. A. (2012). A statistical analysis of SuperDARN scattering volume electron densities and velocity corrections using a radar frequency shifting technique. Journal of Geophysical Research Atmospheres, 117(A8). https://doi.org/10.1029/2012ja017866

Glocer, A., Tóth, G., Gombosi, T., and Welling, D. (2009). Modeling ionospheric outflows and their impact on the magnetosphere, initial results. Journal of Geophysical Research Atmospheres, 114(A5). https://doi.org/10.1029/2009ja014053

Goodwin, L. V., St‐Maurice, J., Akbari, H., and Spiteri, R. J. (2018). Incoherent scatter spectra based on Monte Carlo simulations of ion velocity distributions under strong ion frictional heating. Radio Science, 53(3), 269–287. https://doi.org/10.1002/2017rs006468

Harvey, P. R., Curtis, D. W., Heetderks, H. D., Pankow, D., Rauch-Leiba, J. M., Wittenbrock, S. K., and McFadden, J. P. (2001). The FAST Spacecraft Instrument Data Processing Unit. In Springer eBooks (pp. 113–149). https://doi.org/10.1007/978-94-010-0332-2_5

Hoffman, J. H., Dodson, W. H., Lippincott, C. R., and Hammack, H. D. (1974). Initial ion composition results from the Isis 2 satellite. Journal of Geophysical Research Atmospheres, 79(28), 4246–4251. https://doi.org/10.1029/ja079i028p04246

Hultqvist, B., Øieroset, M., Paschmann, G., & Treumann, R. A. (1999). Source processes in the high-latitude ionosphere. In Space sciences series of ISSI (pp. 7–84). https://doi.org/10.1007/978-94-011-4477-3_2

Jones, G. O. L., Williams, P. J. S., Winser, K. J., Lockwood, M., and Suvanto, K. (1988). Large plasma velocities along the magnetic field line in the auroral zone. Nature, 336(6196), 231–232. https://doi.org/10.1038/336231a0

Lin, M. Y. and Ilie, R. (2022). A review of observations of molecular ions in the Earth’s magnetosphere-ionosphere system. Frontiers in Astronomy and Space Sciences, 8, p.745357

Mark, L. (2013). The Super Dual Auroral Radar Network (SuperDARN): An overview of its development and science. ADVANCES IN POLAR SCIENCE, 24(1), 1-11. https://doi.org/10.3724/sp.j.1085.2013.00001

Milan, S. E., Yeoman, T. K., Lester, M., Thomas, E. C., & Jones, T. B. (1997). Initial backscatter occurrence statistics from the CUTLASS HF radars. Annales Geophysicae, 15(6), 703–718. https://doi.org/10.1007/s00585-997-0703-0

Ogawa, Y., Buchert, S. C., Fujii, R., Nozawa, S., & van Eyken, A. P. (2009). Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. Journal of Geophysical Research, 114, A05305. https://doi.org/10.1029/2008JA013817

Pfaff, R., Carlson, C., Watzin, J., Everett, D., & Gruner, T. (2001). An overview of the Fast Auroral Snapshot (FAST) satellite. In Springer eBooks (pp. 1–32). https://doi.org/10.1007/978-94-010-0332-2_1

Ribeiro, A. J., Ponomarenko, P. V., Ruohoniemi, J. M., Baker, J. B. H., Clausen, L. B. N., Greenwald, R. A., and De Larquier, S. (2013). A realistic radar data simulator for the Super Dual Auroral Radar Network. Radio Science, 48(3), 283–288. https://doi.org/10.1002/rds.20032

Ribeiro, A. J., Ruohoniemi, J. M., Ponomarenko, P. V., Clausen, L. B. N., Baker, J. B. H., Greenwald, R. A., Oksavik, K., and De Larquier, S. (2013). A comparison of SuperDARN ACF fitting methods. Radio Science, 48(3), 274–282. https://doi.org/10.1002/rds.20031

Schunk, R. W. (2016). Polar Wind. In Space Weather Fundamentals (pp. 199-211). CRC Press.

Schunk, R. W. (1999). Ionospheric outflow. Sun‐Earth Plasma Connections, 109, 195-206.

STFC, Rutherford Appleton Laboratory, RAL Space, UK EISCAT support Group, 04/28, 2014-last update, support@eiscat.stp.rl.ac.uk. (n.d.). UK EISCAT Support Group. http://www.eiscat.rl.ac.uk/

Strangeway, R. J., Ergun, R. E., Su, Y., Carlson, C. W., and Elphic, R. C. (2005). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal of Geophysical Research Atmospheres, 110(A3). https://doi.org/10.1029/2004ja010829

Tenfjord, P., and Ostgaard, N. (2013). Energy transfer and flow in the solar wind‐magnetosphere‐ionosphere system: A new coupling function. Journal of Geophysical Research Space Physics, 118(9), 5659–5672. https://doi.org/10.1002/jgra.50545

University of California, B., 05/08, 2009-last update, FAST updates. Available: http://cse.ssl.berkeley.edu/fast_epo/ [28/04, 2014].

University of California, B., Los Angeles, Experimental Space Physics [Homepage of ULCA], [Online]. Available: http://esp.igpp.ucla.edu/research.html [05/16, 2014].

University of Minnesota, 09/04, 1998-last update, FAST. Available: http://ham.space.umn.edu/spacephys/fast.html [28/04, 2014].

Virtanen, I. I., McKay‐Bukowski, D., Vierinen, J., Aikio, A., Fallows, R., and Roininen, L. (2014). Plasma parameter estimation from multistatic, multibeam incoherent scatter data. Journal of Geophysical Research Space Physics, 119(12), 10,528 -10,543 https://doi.org/10.1002/2014ja020540

Wahlund, J., & Opgenoorth, H. J. (1989). EISCAT observations of strong ion outflows from the F‐region ionosphere during auroral activity: Preliminary results. Geophysical Research Letters, 16(7), 727–730. https://doi.org/10.1029/gl016i007p00727

Wahlund, J. ‐., Opgenoorth, H. J., Häggström, I., Winser, K. J., & Jones, G. O. L. (1992). EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited. Journal of Geophysical Research Atmospheres, 97(A3), 3019–3037. https://doi.org/10.1029/91ja02438

Wannberg, G., Wolf, I., Vanhainen, L., Koskenniemi, K., Röttger, J., Postila, M., Markkanen, J., Jacobsen, R., Stenberg, A., Larsen, R., Eliassen, S., Heck, S., & Huuskonen, A. (1997). The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design. Radio Science, 32(6), 2283–2307. https://doi.org/10.1029/97rs01803

Winglee, R. M., Lewis, W. and Lu, G. (2005). Mapping of the heavy ion outflows as seen by IMAGE and multifluid global modeling for the 17 April 2002 storm. Journal of Geophysical Research: Space Physics, 110(A12), 1-15. https://doi.org/10.1029/2004JA010909

Wright, D. M., Yeoman, T. K., Baddeley, L. J., Davies, J. A., Dhillon, R. S., Lester, M., Milan, S. E., & Woodfield, E. E. (2003). High resolution observations of spectral width features associated with ULF wave signatures in artificial HF radar backscatter. EGS - AGU - EUG Joint Assembly, 3863. https://ui.adsabs.harvard.edu/abs/2003EAEJA.3863W/abstract

Yau, A. W., Peterson, W., and Abe, T. (2011). Influences of the ionosphere, thermosphere and magnetosphere on ion outflows. In Springer eBooks (pp. 283–314). https://doi.org/10.1007/978-94-007-0501-2_16

Yeoman, T. K., Klimushkin, D. Y., & Mager, P. N. (2010). Intermediate-m ULF waves generated by substorm injection: a case study. Annales Geophysicae, 28(8), 1499–1509. https://doi.org/10.5194/angeo-28-1499-2010

Zhang, B. and Brambles, O. J., (2021). Polar Cap O+ Ion Outflow and Its Impact on Magnetospheric Dynamics. Ionosphere Dynamics and Applications, pp.83-114.

Zhou, X., Tsurutani, B. T., Reeves, G., Rostoker, G., Sun, W., Ruohoniemi, J. M., Kamide, Y., Lui, A. T. Y., Parks, G. K., Gonzalez, W. D., and Arballo, J. K. (2003). Ring current intensification and convection‐driven negative bays: Multisatellite studies. Journal of Geophysical Research Atmospheres, 108(A11). https://doi.org/10.1029/2003ja009881

Published

2025-10-03

How to Cite

David, T. W., Adetunji, E. O., Michael, C. M., Wright, D. M., Talabi, A. T., & Ajetunmobi, A. E. (2025). Upwelling Ion Observation from the Earth’s Upper Atmosphere During EISCAT Svalbard Radar and FAST Satellite Conjunctions. Nigerian Journal of Physics, 34(4), 1-13. https://doi.org/10.62292/10.62292/njp.v34i4.2025.198

How to Cite

David, T. W., Adetunji, E. O., Michael, C. M., Wright, D. M., Talabi, A. T., & Ajetunmobi, A. E. (2025). Upwelling Ion Observation from the Earth’s Upper Atmosphere During EISCAT Svalbard Radar and FAST Satellite Conjunctions. Nigerian Journal of Physics, 34(4), 1-13. https://doi.org/10.62292/10.62292/njp.v34i4.2025.198

Most read articles by the same author(s)