Evaluating the Dielectric Characteristics of Tissues: A Relationship Between Low Frequency Range and Dryness

Main Article Content

M. Stephen Orkaa
Aisha Ademoh Bello
Joseph Zira Dlama
Ulu Jamus Ewuga

Abstract

The electromagnetic modeling of the human body requires basic parameters, which are characteristics of biological tissues. This review aims at assessing the dielectric characteristics of tissues at varying frequency, temperature and noting the dehydration effect. Using the Patient, Intervention, Comparison, Outcome: PICO as an evidence base practice formula, the review question, “Will exposure to low frequency electromagnetic fields modify the dielectric characteristics of tissues with moisture content much from those that are not exposed?” was broken into key concepts to aid in the search for articles. Findings about the dielectric properties of biological tissues were investigated, taking into account a number of pertinent factors such as the tissues under examination, their temperature, their frequency range, and their level of dryness. Using search engines like Google Scholar, Research Gate, and Science Direct, a preferred reporting item for systematic reviews and meta-analyses (PRISMA) flow chart illustrates how publications within the last two decades plus were found and reviewed. The review's findings highlighted several of the study's weaknesses, including the dehydration effect; scant or not reported and the frequency, where there has been less research conducted at lower frequencies. It was also observed that a low database on dielectric characteristics was typically present in some tissues, regardless of their sensitivity level. Lastly, research that is critical to the development of human body modeling in the future is reviewed

Downloads

Download data is not yet available.

Article Details

How to Cite
Orkaa, M. S., Bello, A. A., Dlama, J. Z., & Ewuga, U. J. (2024). Evaluating the Dielectric Characteristics of Tissues: A Relationship Between Low Frequency Range and Dryness. Nigerian Journal of Physics, 33(2), 146–156. https://doi.org/10.62292/njp.v33i2.2024.229
Section
Articles

References

Agba, E.H., Sombo, T., Ige, T.A. (2014) Measurement and modelling of the effect of gamma irradiation on radiofrequency dielectric properties of bovine kidney tissue. int J Phys Sci. 9(12):275-80 https://doi.org/10.5897/ijps12.314

Aydinalp, C., Joof, S., Dilman, I., Akduman, I., & Yilmaz, T. (2022). Characterization of Open-Ended Coaxial Probe Sensing Depth with Respect to Apeture Size for Dielectric Property Measurement of Heterogeneous Tissues. Sensors, 22(3):760. DOI:10.3390/s22030760

Buisson, C., Mounien, L., Sicard, F., Landrier, J., Tishkova, V., & Sabouroux, P. (2023). Dielectric and Biological Characterization of Liver Tissue in a High-Fat Diet Mouse Model. Sensors, 23(7):3434. DOI: 10.3390/s23073434

Cavagnaro, M., & Ruvio, G. (2020). Numerical Sensitivity Analysis for Dielectric Characterization of Biological Samples by Open-Ended Probe Technique. Sensors, 20(13):3756. DOI: 10.3390/s20133756

Ellison, W.J. (2007) Permittivity of Pure Water , at Standard Atmospheric Pressure , over the Frequency Range 0 – 25 THz and the Temperature Range 0 – 100 ° C. J Phys Chem Ref Data;36(1):1. DOI:10.1063/1.2360986

Elwan, A. M., Salama, A. A., Sayed, A. M., Ghoneim, A. M., Assaied, A. A., Ibrahim, F. A., Shousha, H. A., & Elnasharty, M. M. M. (2018). Response of rats to dose rates of ionizing radiation evaluated by dielectric properties of bone marrow. Progress in Biophysics and Molecular Biology, 140, 124–132. https://doi.org/10.1016/j.pbiomolbio.2018.05.007

Farshkaran, A., Porter, E. (2022) Improved Sensing Volume Estimates for Coaxial Probes to Measure the Dielectric Properties of Inhomogeneous Tissues. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 6, no. 2, pp. 253-259, doi: 10.1109/JERM.2021.3133076.

Fornes-leal, A., Cardona, N., Frasson, M., Castelló-palacios, S., Nevárez, A., Beltrán, V. P., & Garcia-pardo, C. (2019). Dielectric Characterization of In Vivo Abdominal and Thoracic Tissues in the Wireless Body Area Networks. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2903481

Gabriel, C., Peyman, A. (2018) Dielectric properties of biological tissues; variation with age. Conn’s Handb Model Hum Aging; https://doi.org/10.1016/B978-0-12-811353-0.00069-5 939–952.

Gerazov, B., Caligari Conti, D. A., Farina, L., Farrugia, L., Sammut, C. V., Schembri Wismayer, P., & Conceição, R. C. (2021). Application of machine learning to predict dielectric properties of in vivo biological tissue. Sensors, 21(20). https://doi.org/10.3390/s21206935

Gioia, A. La., Id, E.P., Merunka, I., Shahzad, A., Salahuddin, S., Jones, M., O'Halloran, M. (2018) Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues:Challenges and Common Practices. Diagnostics. 8(2):40. doi: 10.3390/diagnostics8020040.

Huang, S., Cai, W., Han, S., Lin, Y., Wang, Y., Chen, F., Shao, G., Liu, Y., Yu, X., Cai, Z., Zou, Z., Yao, S., Wang, Q., Li , Z. (2021) Differences in the dielectric properties of various benign and malignant thyroid nodules. Med Phys.; 48(2):760-769. doi: 10.1002/mp.14562.

Ištuk, N., Porter, E., O’loughlin, D., McDermott, B., Santorelli, A., Abedi, S., Joachimowicz, N., Roussel, H., & O’halloran, M. (2021). Dielectric properties of ovine heart at microwave frequencies. Diagnostics, 11(3). https://doi.org/10.3390/diagnostics11030531

Karacolak, T., Cooper, R., Ünlü, E.S., Topsakal, E. (2012) Dielectric Properties of Porcine Skin Tissue and In Vivo Testing of Implantable Antennas Using Pigs as Model Animals. Antennas and Wireless Propagation Letters, IEEE. 11. 1686-1689. 10.1109/LAWP.2013.2241722.

Liebe, H.J., Hufford, G.A., Manabe, T. (1991) A Model for the Complex Permittivity of Water at Frequencies below 1 THz. Int J Infrared Millimeter Waves.;12(7):659–75. DOI:10.1007/BF01008897

Maenhout, G., Markovic, T., Ocket, I., & Nauwelaers, B. (2020). Effect of open-ended coaxial probe-to-tissue contact pressure on dielectric measurements. Sensors (Switzerland), 20(7), 1–13. https://doi.org/10.3390/s20072060

Maenhout, G., Santorelli, A., Porter, E., Ocket, I., Markovic, T., Nauwelaers, B. (2020) Effect of Dehydration on Dielectric Measurements of Biological Tissue as Function of Time. IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology 4(3):200-207. DOI:10.1109/JERM.2019.2953401

Mizuno, M., Kitahara, H., Sasaki, K., Tani, M., Kojima, M., Suzuki, Y., et al. (2021) Dielectric property measurements of corneal tissues for computational dosimetry of the eye in terahertz band. Biomed Opt Express. 12(3):1295–307. DOI:10.1364/BOE.412769

Peyman, A., Gabriel, C., Grant, E., Vermeeren, G., Martens, I. (2009) Variation of the dielectric properties of tissues with age : the effect on the values of SAR in children when exposed to walkie – talkie devices. Phys Med Biol.; 55(17):5249-5249. DOI:10.1088/0031-9155/55/17/5249

Putzeys, T., Starovoyt, A., Verhaert, N., Wubbenhorst, M. (2021) The dielectric behaviour of human ex vivo cochlear perilymph. IEEE Trans Dielectr Electr Insul.;28(3):932–7. DOI:10.1109/TDEI.2021.009515

Qiang, H., Di, L. U., Jijun, H. A. N., Hongfeng, Y. U., Wen, D., Kaican, C. A. I., & Xuefei, Y. U. (2021). Comparison of dielectric properties of normal human esophagus and esophageal cancer using an open-ended coaxial probe. 41(11), 1741–1746. https://doi.org/10.12122/j.issn.1673-4254.2021.11.21

Salahuddin, S., La Gioia, A., Shahzad, A., & Elahi, A. (2018). Demonstration of dielectric heterogeneity of previously assumed homogeneous tissues: Examination of the Heart. 12th European Conference on Antennas and Propagation. https://doi.org/10.1049/cp.2018.0766

Samaddar P, Gaddam S, Khan M, K PS, Mitra D, Leggett C, et al. (2022) On the Effects of the Measured Dielectric Properties at Variable Thickness of Biological Tissue Samples Using Open-Ended Coaxial Probe Method. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 2022, pp. 1082-1083, doi: 10.1109/AP-S/USNC-URSI47032.2022.9886949.

Samaddar, P., Gaddam, S., Khan, M., Roy, S., Mitra, D., & Arumachalam, S. P. (2022). On the Dielectric Characterization of Biological Samples for Microwave Imaging Reconstruction. IEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1082–1083. doi: 10.1109/AP-S/USNC-URSI47032.2022.9887074

Samaddar, P., Mishra, A. K., Gaddam, S., Singh, M., Modi, V. K., Gopalakrishnan, K., Bayer, R. L., Igreja Sa, I. C., Khanal, S., Hirsova, P., Kostallari, E., Dey, S., Mitra, D., Roy, S., & Arunachalam, S. P. (2022). Machine Learning-Based Classification of Abnormal Liver Tissues Using Relative Permittivity. Sensors, 22(24), 1–11. https://doi.org/10.3390/s22249919

Sasaki, K., Isimura, Y., Fujii, K., Wake, K., Watanabe, S., Kojima, M., et al. (2015) Dielectric property measurement of ocular tissues up to 110 GHz using 1 mm coaxial sensor. Phys Med Biol.;60(16):6273–88. DOI: 10.1088/0031-9155/60/16/6273

Sasaki, K., Porter, E., Rashed, E.A., Farrugia, L., Schmid, G. (2022) Measurement and image-based estimation of dielectric properties of biological tissues — past , present , and future. Phys. Med. Biol.;67. https://doi.org/10.1088/1361-6560/ac7b64

Shahzad, A., Khan, S., Jones, M., Dwyer, R. M., & O’Halloran, M. (2017). Investigation of the effect of dehydration on tissue dielectric properties in ex vivo measurements. Biomedical Physics and Engineering Express, 3(4). https://doi.org/10.1088/2057-1976/aa74c4

Silva, N. P., Bottiglieri, A., Conceição, R. C., O’halloran, M., & Farina, L. (2020). Characterisation of ex vivo liver thermal properties for electromagnetic-based hyperthermic therapies. Sensors (Switzerland), 20(10), 1–14. https://doi.org/10.3390/s20103004

Sombo, T., Agba, E. H., Ige, T. A., Igbawua, T., Azande, T. S., Nyatso, E. R., Aondoakaa, I. S., & Shivil, T. J. (2018). A Comparison of Gamma Irradiation Response Models of Bovine Blood, Liver and Kidney Tissues at Radiofrequency. Open Journal of Biophysics, 08(03), 176–183. https://doi.org/10.4236/ojbiphy.2018.83013

Sombo, T., Ige, T. A., & Agba, E. H. (2015). Mathematical Modelling of the Effects of Gamma Irradiation on Dielectric Dispersion of Bovine Liver Tissues at Low and Radiofrequency. 5(1), 12–17. https://doi.org/10.5923/j.biophysics.20150501.02

Sugitani, T., Kubota, S., Kuroki, S.I., Sogo, K., Arihiro, K., Okada, M., et al. (2014) Complex permittivities of breast tumor tissues obtained from cancer surgeries. Appl Phys Lett. 104(25):253702–5. DOI:10.1063/1.4885087

Tyovenda, A. A., Sombo, T., Nyagara, A. D., & Ayua, T. J. (2020). Effects of X-irradiation on the Dielectric Properties of Albino and Tropical Rats’ Liver Tissues. Journal of the Nigerian Association of Mathematical Physics. https://www.researchgate.net/publication/348191193

Wolf, M., Gulich, R., Lunkenheimer, P., Loidl, A. (2011) Broadband dielectric spectroscopy on human blood. Biochimica et Biophysica Acta 1810(8):727-40. DOI:10.1016/j.bbagen.2011.05.012

Zhekov, S.S., Franek, O., Pedersen, G.F. (2019) Dielectric Properties of Human Hand Tissue for Handheld Devices Testing. IEEE Access. 4. DOI: 10.1109/ACCESS.2019.2914863