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INTRODUCTION 

Space weather originates from the sun with different 

forms of solar activities. All solar activity is driven by 

the solar magnetic field. These activities include; Solar 

flares, coronal mass ejections, high-speed solar wind, 

and solar energetic particles and solar radio flux (Li et 
al., 2016). The output of the sun in all forms; 

electromagnetic radiation, magnetic fields and energetic 

particles varies with both time and position of the sun 

(Usoskinet al., 2007). The dynamo processes in the sun's 

convection zone creates a magnetic field that gives rise 

to solar flares, coronal mass ejections, and other types of 

magnetic activity (Moldwin, 2008).  

 

 The sun’s unceasing activity assures an impact on our 

planet far beyond the obvious light and heat from a 

constant stream of particles in the form of solar wind to 

the unpredictable bombardment from solar flares and 
coronal mass ejections, Earth often feels the effects of 

its stellar companions (Tsvetkov et al., 2018). 

 

The sun goes through periodic variations (solar 

minimum and solar maximum) or cycles of high and 

low activity that repeat approximately every 11 years. 

Although cycles as short as 9 years and as long as 14 

years have been observed. The Solar minimum refers to 

a period of several Earth years when the number of 

sunspots is lowest; solar maximum occurs in the years 
when sunspots are most numerous. During solar 

maximum, activity on the Sun and the effects of space 

weather on our terrestrial environment are high. At solar 

minimum, the sun may go many days with no sunspots 

visible. At maximum, there may be several hundred 

sunspots on any day (Schwenn, 2006).  

 

Agriculture is a key activity of human being since it 

provides basic needs such as food, clothing and shelter 

(Tandzi& Shelton, 2009). A good understanding of 

dynamics involved in food production is critical for the 

improvement of food security. The world’s population is 
expected to increase by 2 billion persons in the next 30 

years, from 7.7 billion currently to 9.7 billion in 2050 

(UN, 2019) and this will require an increase of about 

70% in food production to meet the demand 
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(Tandzi&Shelton, 2009). Extreme weather conditions 

could have significant impacts on crop yields. An 

understanding of the effects of space weather events on 

agricultural produce is also vital for economic decision 

making and provides useful information for policy 

planners as well as government organizations. 
 

Many researchers have used many methods to study the 

impact of space weather events on agricultural produce. 

In their study, the author in (Van et al., 2013) applied 

statistical model in carrying out study on global level of 

space weather scenarios to measure the effects of space 

weather events on agricultural region with diverse crops, 

using global grid-base and local point-based model. 

More, (Chen &Popovich, 2002) used geo-spatial 

cropmodeling at the 50 spatial resolutions to estimate 

the impact of weather extremesevent(combined heat 

wave and drought) on maize yields across the USA. 

Results from these have been shown that weather 

extremes affect crop yield resulting to higher food prices 

and decreasing demand for industrial products. The 

biophysical analysis results suggest that the weather 

extremesevent of 2012 that occurred in the USA 

increased food insecurity among poor communities 

where maize provides a substantial portion of daily 

calorie intake. Kindieet al (Kindieet al., 2014) used 

spatial bio-economic modeling toestimate the impact of 

an extended drought in China on foodsecurity in the 

nation. The studies highlighted the need toconsider trade 

effects in the economic analysis of extreme events. He 

concluded that the extreme weather event would have 

indirect secondary effects on food security in otherparts 

of the world where maize is a staple food. Also, 

Mechleret al. (2010) (Mechleret al., 2010), used a 

spatial bio-economic to quantifythe economic effect of a 

combined heat wave and drought inSpain. Their results 

revealed the need to consider trade effects in the 

economic analysis of space weather events which could 

have impacts on food security in Spain. More 

(Pustil’nik& Din, 2009), presented a conceptual model 

of possible modes for the sensitivity of wheat prices to 

weather conditions, caused by solar cycle variations. 

The database of wheat prices in England in the Middle 

Ages was used to search for a possible influence of solar 

activity on the wheat market. A comparison of the 

statistical properties of the intervals between wheat price 

bursts during years 1249-1703 with statistical properties 

of the intervals between minimums of solar cycles 

during years 1700-2000 was made. The comparison 

revealed that the statistical properties of these two 

samples were similar, both for characteristics of the 

distributions and for histograms of the distributions. The 

authors analyzed a link between wheat prices and solar 

activity in the 17th Century and showed that for all 10-

time moments of the solar activity minimums, the 

observed prices were higher than prices for the 

correspondent time moments of maximal solar activity. 

These results were considered as direct evidence of the 

causal connection between wheat price bursts and solar 

activity. Deepak et al. (Ray et al., 2012) used a global, 

high-resolution crop yield dataset which includes data of 

the top four global crops (maize, wheat, rice, soybeans) 

across ∼13 500 spatial units worldwide, spanning the 

years 1961–2008 to study the impacts of droughts and 

heat waves on yield anomalies of maize, soybeans, rice 

and spring wheat at the global scale using sub-national 

yield data and applying a machine-learning 

algorithm.The result suggests droughts and heat waves 

can lead to harvest failures and threaten the livelihoods 

of agricultural producers and the food security of 

communities worldwide. The research carried out by 

(Lesk& Corey, 2016) analyzed national agricultural 

production data from the United Nations' Food and 

Agriculture Organization for 16 different kinds of cereal 

in 177 countries. They also examined 2,800 international 

weather disasters from 1964 to 2007. They found that 

cereal harvests decreased due to both droughts and 

extreme heat, and production levels in North America, 

Europe and Australasia dropped by an average of 19.9 

percent from droughts alone – roughly double the global 

average.Also, Steffen (2019) (Steffen et al., 2019) 

analyzed records that contained national food production 

of 16 different cereal crops in 177 countries. They 

compared space weather activities that occurred from 

1964 to 2007. After evaluating their data, the team 

created a detailed snapshot of how space weather 

conditions affected global cereal harvests. (Trnkaet al., 

2007), studied the Effect of Estimated Daily Global 

Solar Radiation Data on the Results of Crop Growth 

Models. The research was conducted (i) at the eight 

individual sites in Austria and the Czech Republic where 

measured daily radius of gyration (RG) values with 

seven methods for RG estimation being tested, and (ii) 

for the agricultural areas of the Czech Republic using 

daily data from 52 weather stations, with five RG 

estimation methods. The RG values were estimated from 

the hours of sunshine using the Angstrom-Prescott 

formula. They concluded that even the use of methods 

based on hours of sunshine, which showed the lowest 

bias in RG estimates, led to a significant distortion of 

the key crop model outputs.  
 

Despite the previous research done, the effect of space 

weather parameters such as solar wind and solar radio 

flux has not been well studied. It is for this reason that 

we analyzed space weather effects on agricultural 

produce using the VARs package in R-programming 
statistical software.  
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In this paper, we have modeled crop yield using space 

weather parameters and have compared the results with 

existing data to validate the model. The analyzed results 

were used to evaluate the effects of space weather 

parameters on agricultural produce and space weather 

was found to correlate with agricultural crop yields. It 
was found that extreme space weather conditions such 

as high-speed solar wind and high solar radio flux are 

responsible for decrease in crop yields. 

 

AREA OF STUDY 

Benue State is located along the lower River Benue 

basin in the middle belt region of Nigeria. The 

geographic coordinates of Benue State are between 

latitudes 6°25'N and 8° 8'N of the equator and between 

longitudes 7° 47'E and 10° 00'E of the Greenwich 

meridian. The State shares boundary with Nasarawa 

State to the north, Taraba to the Northeast, in the south 
by Cross River, while in the southwest is Enugu, Ebonyi 

and Kogi State to the west. The State has 23 Local 

Government Areas with a total land area of 30,800 sq. 

km and a total population estimated to be 4,253,641. 

Based on the Köppen Classification Scheme, Benue 

State falls within the AW-climate-a Tropical Climate 

with two typical wet and dry seasons. The rainy season 

lasts from April to October, with annual rainfall ranging 

from 100mm-200mm. while dry season begins in 

November and ends in March. Temperatures are 

continually high all through the year, with average 
temperatures fluctuating between 21°C - 37°C. The 

vegetation of the State is typically that of the southern 

Guinea Savannah, characterized by sparse grasses and 

various species of trees. 

 

Data 

Yearly data of both Solar wind and solar radio flux were 

obtained from National Aeronautics and Space 

Administration (NASA, 2010) and Natural Resources 

Canada archive for a period of 2006-2016 respectively. 

In addition, cereal crop yield data cultivated for the 

period of 2006-2016 were obtained from Benue 
Agricultural and Rural Development Authority 

(BNARDA, 2007). 

 

METHOD 

The method used in this work is a theoretical method. 

Specifically, the Vector Autoregressive model (VAR) 

was used. 

 

Vector Autoregressive (VAR) Model 

VAR model is a Time Series multi-equation system. In 

this, model each variable has one equation (Olanrewaju, 
et al., 2015). The lagged values of each variable itself 

are all included. The model is used to capture the linear 

inter-dependencies among multiple time series. Vector 

Autoregressive (VAR) models generalize the 

univariateautoregressive model (AR model) by allowing 

for more than one evolving variable. In general, VAR 

encom-passes correlation information of the observed 

data and use this correlation information to forecast 

future movements or changes of the variable of interest 

(Hamilton &Susmelb, 1994). VAR model is one of the 
most successful and flexible models for the analysis of 

multivariate time series. The general form of Vector 

Autoregressive (VAR) model can be written as shown in 

equation (1) (Bernhard, &Kronbergim 2008): 

 

𝑦(𝑡) =  𝐴1𝑦(𝑡 − 1) +  𝑒(𝑡) (1) 
 

Equation (1) in matrix notation is written as, 
 

𝑦1(𝑡)
𝑦2(𝑡)
𝑦3(𝑡)

:
𝑦𝑘(𝑡)

 =

 
 
 
 
 
𝑎11 𝑎12 𝑎13 . . 𝑎1𝑘

𝑎21 𝑎22 𝑎23 . . 𝑎2𝑘

𝑎31 𝑎32 𝑎33 . . 𝑎3𝑘

: : : : :
𝑎𝑘1 𝑎𝑘2 𝑎𝑘3 . . 𝑎𝑘𝑘  

 
 
 
 

 

 
 

𝑦1(𝑡 − 1)
𝑦2(𝑡 − 1)
𝑦3(𝑡 − 1)

:
𝑦𝑘(𝑡 − 1) 

 
 

+  

 

 
 

𝑒1(𝑡)
𝑒1(𝑡)
𝑒1(𝑡)

:
𝑒𝑘(𝑡) 

 
 

 

(2) 

where, 
 

𝑦(𝑡 − 1) =  

 

 
 

𝑦1(𝑡 − 1)
𝑦2(𝑡 − 1)
𝑦3(𝑡 − 1)

:
𝑦𝑘(𝑡 − 1) 

 
 

 = Vector of variables,  

 

 
 
 
 
 
𝑎11 𝑎12 𝑎13 . . 𝑎1𝑘

𝑎21 𝑎22 𝑎23 . . 𝑎2𝑘

𝑎31 𝑎32 𝑎33 . . 𝑎3𝑘

: : : : :
𝑎𝑘1 𝑎𝑘2 𝑎𝑘3 . . 𝑎𝑘𝑘  

 
 
 
 

 * 

 

= Vector of coefficients of variables,  

 

𝑒(𝑡) =

 

 
 

𝑒1(𝑡)
𝑒1(𝑡)
𝑒1(𝑡)

:
𝑒𝑘(𝑡) 

 
 

 Vector of residuals, t = 1, 2, 3 …k,  

 
t= period (years). 
 

There is thus one equation for each variable included in 

the model as dependent variable. All the equations have 

the same form and share the same right-hand side 

variables. 

 

The VAR model was used to model the yields for the 
four crops each, one (Maize, Rice, Sorghum and Millet) 

https://en.wikipedia.org/wiki/Interdependencies
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/AR_model
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at a time in relationship to two space weather parameters 

(solar wind and solar radio flux). For the sake of 

convenience, the following notations were used; 𝑦𝑚  𝑡  
is the model yield for maize, 𝑦𝑟(𝑡), is the model yield 

for rice, 𝑦𝑠(𝑡) model yield for sorghum and 𝑦𝑚𝑖 (𝑡) 
model yield for millet respectively in equations (3)-(6): 

 

𝑦𝑚 (𝑡) =  𝑎11𝑦𝑚 (𝑡 − 1) + ⋯ + 𝑎1𝑘𝑦𝑚 (𝑡 − 𝑘) +
𝑎51𝑦𝑠𝑤 (𝑡 − 1) + ⋯ + 𝑎5𝑘𝑦𝑠𝑤 (𝑡 − 𝑘) + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 −

1) + ⋯ + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 − 𝑘) +  𝑒𝑚 (𝑡)   

     (3)  

𝑦𝑟(𝑡) =  𝑎21𝑦𝑟(𝑡 − 1) + ⋯ + 𝑎2𝑘𝑦𝑟(𝑡 − 𝑘) +
𝑎51𝑦𝑠𝑤 (𝑡 − 1) + ⋯ + 𝑎5𝑘𝑦𝑠𝑤 (𝑡 − 𝑘) + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 −

1) + ⋯ + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 − 𝑘) +  𝑒𝑟(𝑡)   

      (4) 

       

𝑦𝑠(𝑡) =  𝑎31𝑦𝑠(𝑡 − 1) + ⋯+ 𝑎3𝑘𝑦𝑠(𝑡 − 𝑘) +
𝑎51𝑦𝑠𝑤 (𝑡 − 1) + ⋯ + 𝑎5𝑘𝑦𝑠𝑤 (𝑡 − 𝑘) + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 −

1) + ⋯ + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 − 𝑘) +  𝑒𝑠(𝑡)   

      (5)

       

𝑦𝑚𝑖 (𝑡) =  𝑎41𝑦𝑚𝑖 (𝑡 − 1) + ⋯ + 𝑎4𝑘𝑦𝑚𝑖 (𝑡 − 𝑘) +
𝑎51𝑦𝑠𝑤 (𝑡 − 1) + ⋯ + 𝑎5𝑘𝑦𝑠𝑤 (𝑡 − 𝑘) + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 −

1) + ⋯ + 𝑎6𝑘𝑦𝑠𝑟𝑓 (𝑡 − 𝑘) +  𝑒𝑚𝑖 (𝑡)  

      (6)

     

 𝑒𝑚,, 𝑒𝑟  , 𝑒𝑠, 𝑎𝑛𝑑𝑒𝑚𝑖 ,= symbolizes vector of 

residuals of Maize, Rice, Sorghum and Millet yield 

respectively. Also, t = period (years),𝑦𝑠𝑟𝑓  and𝑦𝑠𝑤   

symbolizes solar radio flux and solar wind respectively 

as given in equations (3) – (6). All the four equations are 

lagged on the crop itself and the two space weather 

parameters (solar wind and solar radio flux) each 
(Bonett, 2008). The number of times each of the 

equations was lagged is an empirical matter and was 

only decided at the estimation stage of each of the 

models. 

 

Method of Data Analysis 

The data obtained for this study was analyzed using the 

VARs package in R-programming statistical software. 

The results obtained from this analysis is presented in 

Figures 1- 12. 

 

Tests Analysis  

In this study, both stationarity test and diagnostic test 

were employed to check the stationarity of the data for 

the analysis and model performance which are discussed 

below; 

 

Stationarity Test 

Stationarity is an important concept in time series 

analysis. The stationarity test is a property of time series 

which states that the value of the variable doesn’t 

change with time that is, variation in time does not serve 

as a factor that brings changes in the value of a variable 

(Shay, 2019). 

 

The stationarity test was conducted to know if the data 

was stationary or not. The Augmented Dickey-Fuller 

(ADF) test for unit root was employed to check 
stationarity. Unit roots are a cause for non-stationarity. 

The result of the Augmented Dickey-Fuller unit root test 

on the six variables considered in the model equation is 

presented in appendix 1. According to the stationarity 

test when p –values are less than 0.05 the variables were 

statistically significant and there was no unit root 

present in the original data, hence the series were 

stationary and suitable for the analysis. The result of this 

test is presented in Appendix 1.  

 

The stationarity test was carried out using the VARs 

package in R-programming statistical software. 
 

The model fitting procedure was continued and the 

VARSelect () in R programing was used in selecting an 

optimal lag-order for each of the four-crop model. The 

lag orders were determined using Akaike Information 

Criterion (AIC). AIC selected VAR (2) for Maize and 

Millet model while VAR (1) was selected for Rice and 

Sorghum, this is because both Millet and Maize model 

have the same minimum Akaike Information Criterion 

(AIC), while Rice and Sorghum model also has the same 

AIC (lag order selected must have minimum AIC value). 
However, the Akaike information criterion with the 

smallest criterion value evidences the most ideal lag 

length to employ. After selecting an appropriate lag 

order for all four models, the models were estimated 

including a constant term. The summary of each of the 

estimated coefficients of Maize, Rice, Sorghum and 

Millet model is presented in appendix 2, 3, 4 and 5 

respectively.  

 

The estimated coefficients of the models revealed that 

all lagged variables enter significantly into the equations 

of the VAR (2), VAR (1), VAR (1) and VAR (2) for 
Maize, Rice, Sorghum and millet respectively. 

 

The Diagnostic Test 
Diagnostic test are tests carried out on data which 

includes; the normality (Jarque-Bera normality) test and 

stationarity test to reveal model performance (Suniya, 

2014). Normality is a condition in which the used 

variables follow the standard normal distribution. A 

normally distributed data set has a probability density 

(Suniya, 2014). The diagnostic test for all four crops 

revealed that the model performance was good.  
 

The Jarque-Bera normality test on the model residuals 

each returned Chi-squared statistic of 2.8436, df = 6,  

p-value = 0.0364 for Maize VAR (2) model, 3.0215,  

https://en.wikipedia.org/wiki/Unit_root
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df = 1, p-value = 0.04802 for Rice VAR (1) model, 

2.1032, df = 1, p-value = 0.0014 for Sorghum VAR (1) 

model, and 1.9741, df = 2, p-value = 0.036802 for Millet 

VAR (2) model respectively. The test also revealed that 

the normal plots were neither negatively nor positively 

skewed and that the shape of the plot was platikurtic for 
the Maize and Sorghum models while a mesokurtic 

shape was returned for the Rice and Millet models 

respectively. The diagnostic check of all four models 

indicated that the residuals were completely random in 

nature and hence, confirming relatively good VAR (p) 

models. According to the diagnostic test when model 

residuals returned a very small chi-squared test statistic 

it means that observation data fits expected data 

extremely well. In other words, there is a relationship. A 

very large chi square test statistic means that the data 

does not fit very well. In order words, there is no 

relationship.The “critical”value of the chi-square 

statistic is 3.84. If the chi-square calculated is bigger 

than the critical value, then the data did not fit the 

model, which means you have to reject the null 
hypothesis (Johns et al., 1991). The diagnostic test was 

carried out using the VARs package in R-programming 

statistical software. 

 

RESULTS AND DISCUSSION 

Following a confirmation from the tests, data were fit 

into the model for all crops and the results are presented 

in Figures 1-4. 

 

 

 
 

Figure 1: Graph of Model Result for Sorghum 

 

 
 

Figure 2: Graph of Model Result for Maize 

 

 
 

Figure 3: Graph of Model Result for Millet 
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Figure 4: Graph of Model Result for Rice 

 

 

The model results and observed yield data have been 

compared with space weather parameters, namely solar 

wind and solar radio presented in Figures 5 to 12. 

 

 

 
 

Figure 5: Model fit, Observed yield (Sorghum) and Solar Radio flux 

 

 
 

Figure 6: Model fit, Observed yield (Sorghum) and Solar Wind 

 

 
 

Figure 7: Model fit, Observed yield (Millet) and Solar Radio flux 
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Figure 8: Model fit, Observed yield (Millet) and Solar Wind 

 

 

 
 

Figure 9: Model fit, Observed yield (Maize) and Solar Radio flux 

 

 
 

Figure 10: Model fit, Observed yield (Maize) and Solar Wind 

 
 

 
 

Figure 11: Model fit, Observed yield (Rice) and Solar Radio flux 
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Figure 12: Model fit, Observed yield (Rice) and Solar Wind 

 

Figure 1 shows the model fit for sorghum. It can be seen 
from the figure that the years 2008, 2010- 2011 and 

2014 recorded low crop yield. This is due to high 

activities of the sun, during these years extreme 

conditions of the sun can give rise to extreme conditions 

that are not favorable to crops (Pustil’nik& Din, 2004).  

While the years 2009 and 2012 recorded the highest 

yield of Sorghum as shown on Figure 4.1 This suggests 

that low solar radio flux index and lower solar wind 

streams resulting from solar minimum conditions are 

more favorable to crops hence higher crop yield (Powell 

& Reinhard, 2016). 

 
Figure 2 depicts the model fit for Maize. Low yields 

were recorded in years 2006, 2007 and 2008-2011. This 

can be attributed to the fact that sun’s activity these 

years are very high giving rise to extreme conditions that 

are not be considered favorable to crops (Pustil’nik& 

Din, 2009). However, years 2012- 2016 recorded the 

highest yield of maize as shown in Figure 2. This 

suggests that the lower the solar wind streams and solar 

radio flux, the higher the crop yield and crops are 

favorable during solar minimum condition (Powell & 

Reinhard, 2016). 
 

Figure 3 gives the model fit for Millet. Years 2007, 

2008, 2010, 2013 and 2014- 2016 recorded low yield. 

This is ascribed to sun’s activities at these years giving 

rise to extreme conditions that are unfavorable to crop 

yield. This means that extreme solar activities result to 

low crop yield (Powell & Reinhard, 2016). 

 

The highest yield in millet was recorded in year 2012 in 

Figure 3. This showed that the lower the solar wind and 

solar radio flux the higher the crop yield (Pustil’nik, 

2013). 
 

Figure 4 shows the model fit for Rice. It can be seen that 

years 2012, 2013, and 2014- 2016 recorded low crop 

yield. This is due to high solar wind and solar radio flux. 

This suggests that the higher the solar wind streams and 

solar radio flux the lower the crop yield and vice-versa. 

However, in years 2006, 2007 and 2008-20011 recorded 

highest yield of Rice as shown in Figure 4. This implies 

that crops are favorable when solar wind streams and 
solar radio flux index are low (Pustil’nik, 2013). 

 

To validate this model, the model results were compared 

with data and this is presented in Figures 5 to 12. The 

overall result showed a good agreement with data. For 

example, Figures (5) and (6) both model fit and data 

gave crop yield values for the years 2007 (192.9400 

Metric Tonnes) 2009 (196.4600 Metric Tonnes), 2011 

(192.2600 Metric Tonnes) and 2012 (196.6700 Metric 

Tonnes) for Sorghum, years 2008 (63.6600 Metric 

Tonnes), 2010 (64.1800 Metric Tonnes), 2011 (65.2200 

Metric Tonnes) and 2014 (64.4300 Metric Tonnes) for 
Millet (Figures 7 and 8), years 2008 (146.9500 Metric 

Tonnes), 2009 (149.9400 Metric Tonnes), 2015 

(174.4000 Metric Tonnes) and 2016 (175.3400 Metric 

Tonnes) for Maize (Figures 9 and 10) and years 2006 

(277.7300 Metric Tonnes), 2009 (289.6600 Metric 

Tonnes) and 2013 (146.6800 Metric Tonnes) for Rice 

(Figures 11 and 12) respectively. In summary crop yield 

was found to decrease with increasing space weather 

parameters and vice-versa. 

 

CONCLUSION 
Space weather data was analyzed alongside crop data to 

understand the effects of space weather on crop produce. 

The analyzed results were used to evaluate the effects of 

space weather parameters on agricultural produce. Space 

weather was found to correlate with agricultural crop 

yields. It was found that extreme space weather 

conditions such as high-speed solar wind and high solar 

radio flux are responsible for decrease in crop yields. 

While periods with normal conditions such as low speed 

solar wind and low solar radio flux were found favorable 

to crops. For example, Sorghum in years 2009 (196.46 

metric tonnes) and 2012 (196.67 metric tonnes), for 
Maize in years 2012 (175.38 metric tonnes) and 2013 

(175.59 metric tonnes), for Millet in year 2012 (67.61 

metric tonnes) and for Rice in years 2008 (289.72 metric 

tonnes) and 2009 (289.66 metric tonnes). 
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