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ABSTRACT 

The pseudo-shifted ℓ-expansion technique was used in the Dirac equation to derive 

a Schrodinger-like equation. The equation was solved using a non-QCD based 

power potential of the form; 𝑉(𝑟) = (𝑔1𝑟
𝑎 − 𝑉𝑜) with 𝑎 =

𝑚𝑜

2𝑚𝑞
 to obtain the mass 

spectra for bottom quark 𝛾, charmonium 𝛹, up quark ⍴,
𝑠trange quark ∅ and mixed quark φ. The mass spectra of both light and heavy 

mesons obtained in this work were in good agreement with both the experiment and 

other theoretical works. However, the mass spectra of 10.1564 and 10.3039 

obtained for bottom quark were small when compare with the experimental results 

for the same orbits. Other discrepancies observed were the 9.9252 for bottom quark 

and 3.9715 for charmonium that were higher than experimental results. This model 

has successfully mimicked the mass spectra of both light and heavy mesons and 

also predicts the mass spectra of mixed mesons. 

INTRODUCTION 

The power law potential models have been used 

previously in the Schrodinger equation to predict the 

mass spectroscopy, density of mesons successfully 

(Kang and Schnitzer, 1975; Ram and Halasa, 1979).  

The authors used linear and harmonic oscillator 

potentials to calculate the ground state energies of 

𝜑,𝛷 𝑎𝑛𝑑 𝜌 mesons.  Further, the spectra of ϒ and 𝜑 

were explained by the use of the fractional potential 

(Jena, 1983; Jena and Tripati, 1983)  

The Schrodinger equation for some specific cases has a 

solution or an approximation, and solving it yields the 

Eigenvalues and Eigen functions for the energy and the 

spectroscopy of mesons and other physical quantities. 

For some particular cases, the Schrodinger equation has 

an exact solution, but in some special cases, numerical 

techniques or approximation schemes are employed; 

methods like the WKB methods, Nikoforov Uvarov 

method, and PSLET (pseudo-perturbative shifted-

ℓexpansion technique) method amongst numerous 

methods used (Sharma and Sharma, 1984; Mustafa, 

2003).  

These numerical methods have been used successfully 

to analyze the mass spectroscopy of the meson 

employing the Nikoforov-Uvarov method and WKB 

successfully (Hall, 2005; Sharma and Fiase, 2003; 

Ikhdair and Falaye, 2014). The PSLET method has been 

implemented to analyze the meson spectroscopy 

(Mustafa and Znojil, 2002). Some of these methods are 

not widely applicable, that is to say, some of the 

methods cannot approximate efficiently for some 

problems. Although some methods give simple relations 

for the eigenvalues but give very complicate relations 

for the Eigen function.  

The simple way for finding both eigenvalues and the 

Eigen functions of Schrodinger and Schrodinger-like 

equations for power-law and logarithmic potentials, 

which are very important in particle physics has been 

investigated (William, Inyan and Thompson, 2020; 

Ushie, 2021). Numerous works have been carried out 

using different approximation methods. In this work, the 

researchers seek to test the validity of the PSLET recipe 

using the non-quantum chromodynamics (QCD) power 

law potential and predict the mass spectroscopy of 

heavy, light and mixed meson.  

 

MATERIALS AND METHODS 

The Schrödinger equation is solved numerically 

different methods ranging from harmonic method, 

PSLET, variation method, Wentzel-Krammers-Brillioun 

approximation, among many others. The research 

wishes to use the PSLET due to its robustness and 
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newness as it provides a reliable result as tested by 

others that have worked on this research (Mustafa and 

Odeh, 2001; Mustafa, 2004).  

The power law potential of the form was employed in 

this work. (Sharma and Fiase, 2003) 

V(r) = (g1r
a − Vo)    (1) 

Where a =  
mo

2mq
 ,  

mq is the mass of the constituent quarks (in GeV) and mo 

the parameter that render dimensionless setting mo=1GeV  

The above potential is an admixture of scalar and vector 

parts as suggested by the phenomenology of fine, hyperfine 

splitting of heavy quarkonium system in non-relativistic 

approach (Magyari, 1980). 

    

 

Dirac Bound State [PSLET Recipe] 

The Dirac equation with Lorentz Scalar [added to the mass term] and Lorentz vector [coupled as the O-component 

of the 4-vector potential] potential reads in (ħ = c = 1units) has been used. 

{𝛼⃗ . 𝛽⃗ +  𝛽[𝑚 + 𝑆(𝑟)]}𝜑(𝑟 ) = {𝐸 − 𝑉(𝑟)}𝜑(𝑟)    (2) 

Since   𝑉𝑟(𝑟) and 𝑉𝑠(𝑟) are spherical symmetry, equation (2) can be separated in a system of the following coupled 

equations for the radical wave functions (Schiff, 1968). That is  ∅(𝑟)𝑎𝑛𝑑 𝛾(𝑟) as shown in equations (3) and (4): 

[𝐸′ − 𝑉𝑟 − 𝑉𝑠 − 𝑚𝑞]∅(𝑟) + { 
𝑘+1

𝑟
+ 

𝑑

𝑑𝑟
} 𝛾(𝑟) = 0         (3) 

[𝐸′ − 𝑉𝑟 + 𝑉𝑠 + 𝑚𝑞]𝛾(𝑟) + { 
𝑘−1

𝑟
− 

𝑑

𝑑𝑟
}∅(𝑟) = 0         (4) 

Equation (3) can also be written in the form:  

ᶓ
1(𝑟)𝐺(𝑟)  +  

𝑑𝐹(𝑟)

𝑑𝑟
− 

𝑘

𝑟
𝐹(𝑟) = 0          (5) 

ᶓ
2(𝑟)𝐹(𝑟)  +  

𝑑𝐺(𝑟)

𝑑𝑟
− 

𝑘

𝑟
𝐺(𝑟) = 0         (6) 

where: 

ᶓ
1
= [𝐸′ − 𝑉𝑟 − 𝑉𝑠 − 𝑚𝑞]∅(𝑟) = 𝐺(𝑟)         (7) 

ᶓ
2
= [𝐸′ − 𝑉𝑟 + 𝑉𝑠 + 𝑚𝑞]𝛾(𝑟) = 𝐹(𝑟)         (8) 

The key points about the power law potential 𝑉(𝑟) =  𝑔
𝑜
𝑟
(

𝑚𝑜
2𝑚𝑞

)
− 𝑉𝑜, using the Dirac equation for an independent 

quark model, Magyari (1980) suggested the potential be treated like this: 

𝑉′(𝑟) =
1

2
𝑉(𝑟) = 𝑉𝑠(𝑟) + 𝑉𝑟(𝑟)         (9) 

With the choice of the vector fraction gv = ½, the potential for the independent particle model of quarks would 

approximately read as:  

𝑉′(𝑟) =
1

2
𝑉(𝑟) = 𝑉𝑠(𝑟) + 𝑉𝑟(𝑟)          (10) 

𝑉𝑠(𝑟) = 𝑆(𝑟) ; 𝑉𝑟(𝑟) = 𝑉(𝑟)         (11) 

For this case, each of the scalar and vector parts would be equal to 1/4V(r) 

Now, where k = − (𝑙 +  1) for j = l + ½,  

𝑘 =  𝑙 𝑓𝑜𝑟 𝑗 =  𝑙 –  ½   
Thus  

ᶓ
1(𝑟) = 𝐸 − 𝑉(𝑟) − [𝑚 + 𝑆(𝑟)]         (12) 

ᶓ
2(𝑟) = 𝐸 − 𝑉(𝑟) + [𝑚 −  𝑆(𝑟)]  . . . 𝐸 + 𝑚 − 𝑦(𝑟)        (13) 

𝑦(𝑟) = 𝑉(𝑟) − 𝑆(𝑟)            (14) 

From equation (6), we make F(r) subject. We know that E is the relativistic energy while G(r) and F(r) are the large 

and small radial components of the Dirac Spinor.  

𝐹(𝑟) =  
[
𝑑𝐺(𝑟)

𝑑𝑟
+

𝑘

𝑟
]

ᶓ2(𝑟)
   

Substitute the above expression in equation (5), we obtained: 

ᶓ
1(𝑟)𝐺(𝑟) +

𝑑

𝑑𝑟
[

1

ᶓ2(𝑟)

.
𝑑𝐺(𝑟)

𝑑𝑟
+ 

𝑘

𝑟

𝐺(𝑟)

ᶓ2(𝑟)

] − 
𝑘

𝑟
[

1

ᶓ2(𝑟)

.
𝑑𝐺(𝑟)

𝑑𝑟
+

𝑘

𝑟

𝐺(𝑟)

ᶓ2(𝑟)

] = 0      (15) 

Using product rule for the required differentiation in equation (5) 

ᶓ
1(𝑟)𝐺(𝑟) + 

𝑑

𝑑𝑟
[

1

ᶓ2(𝑟)

.
𝑑𝐺(𝑟)

𝑑𝑟
] + 

𝑑

𝑑𝑟
[
𝑘

𝑟

𝐺(𝑟)

ᶓ2(𝑟)

] − 
𝑘

𝑟
.

1

ᶓ2(𝑟)

𝑑𝐺(𝑟)

𝑑𝑟
+ 

𝑘2

𝑟2

𝐺(𝑟)

ᶓ2(𝑟)
= 0  
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Upon differentiation, we have  

[
𝑑2

𝑑𝑟2
−

𝑘(𝑘+1)

𝑟2
+

𝑦′(𝑟)

ᶓ2(𝑟)
.

𝑑

𝑑𝑟
+ 

𝑦′(𝑟)

ᶓ2(𝑟)
.
𝑘

𝑟
+ ᶓ

1
(𝑟)ᶓ

2
(𝑟)]𝐺(𝑟) = 0       (16) 

Now  

𝑑2𝐺(𝑟)

𝑑𝑟2 + 
𝑦′(𝑟)

ᶓ
2
(𝑟)

.
𝑑𝐺(𝑟)

𝑑𝑟
−  [

𝑘(𝑘 + 1)

𝑟2
+ 

𝑘

𝑟
.
𝑦′(𝑟)

ᶓ
2
(𝑟)

]𝐺(𝑟) =  −  ᶓ
1
(𝑟)ᶓ

2
(𝑟)𝐺(𝑟) 

Where  𝑦′ =
𝑑

𝑑𝑟
 ,  𝐺(𝑟) =  ∅𝑒𝑥𝑝 [

−𝑝(𝑟)

2
] and    𝑃′(𝑟) =  

𝑦′(𝑟)

ᶓ2(𝑟)
   

It has been established in this work that  

[−
𝑑2

𝑑𝑟2
+

𝑘(𝑘+1)

𝑟2
+ 𝑢(𝑟) − ᶓ

1
(𝑟)ᶓ

2
(𝑟)]∅(𝑟) = 0         (17) 

Where  

𝑢(𝑟) =  
𝑦′′(𝑟)

2ᶓ2(𝑟)
− 

𝑘

𝑟

𝑦′(𝑟)

ᶓ2(𝑟)
+ 

3

4
[
𝑦′(𝑟)

ᶓ2(𝑟)
]
2

          (18) 

This can reduce to Klein Gordon equation with 𝑘(𝑘 + 1) = 𝑙(𝑙 + 1) for any K, if 𝑢(𝑟) is set to zero (Mustafa, 

2008). It is therefore convenient to introduce a parameter ʎ = 0,1 in 𝑢(𝑟) so that ʎ = 0. Also, we shall be interested 

in the problems where the rest energy 𝑚𝑐2 is large compared to the binding energy (Magyari, 1980) 

𝐸𝑏𝑖𝑛𝑑 = 𝐸 − 𝑚𝑐2 

Would evolve to  
1

ᶓ2(𝑟)
=

1

𝐸𝑏𝑖𝑛𝑑+2𝑚−𝑦(𝑟)
 ≈  

1

2𝑚
− 0(

1

𝑚2
)         (19) 

Which turns to: 

𝑢(𝑟) =  
ʎ

4𝑚
[𝑦′′(𝑟) −

2𝑘𝑦′(𝑟)

𝑟
+ 

3𝑦′(𝑟)2

4𝑚
]         (20) 

Considering the Columb like potentials  

𝑉(𝑟) =  −
𝐴1

𝑟
 𝑎𝑛𝑑 𝑠𝑐𝑎𝑙𝑎𝑟 𝑆(𝑟) =  −

𝐴2

𝑟
   (Lorentz scalar and potential vectors) 

𝑉(𝑟) =  𝑉(𝑟)2 − 
𝐴1

2

𝑟2 - - - - (a) 

 𝑆(𝑟) =  𝑆(𝑟)2 − 
𝐴2

2

𝑟2 - - - - (b ) 

Equation (18) further elaborates to  

−
𝑑2

𝑑𝑟2 + [𝑙2̅ + 𝑙(̅2𝛽𝑜 + 1) + 𝛽𝑜(𝛽𝑜 + 1) +  𝛤(𝑟) + 2𝐸𝑉(𝑟)]∅(𝑟) = 𝜀2∅(𝑟)  -     (21) 

Where  

𝛤(𝑟) =  −𝑉𝑟(𝑟) + 𝑆𝑟(𝑟) + 2𝑚𝑆(𝑟) + 𝑚2 +  𝑢(𝑟)        (22) 

𝑙 ̅ =  𝑙′ − 𝛽
𝑜
; 𝑙′ = −

1

2
+ √(𝑙 +  

1

2
)

2

− 𝐴1
2 + 𝐴2

2        (23) 

And 𝛽
𝑜
 is a suitable shifts to be determined, setting: 

𝑥 = 𝑙
1

2 (𝑟 − 𝑟𝑜)/𝑟𝑜, where 𝑟𝑜 is currently an arbitrary point to be determined through the minimization of the 

lending energy term below. It is therefore convenient to expand about 𝑥 =  𝑜 (𝑖. 𝑒 𝑟 = 𝑟𝑜) and use the following 

expansions.  

∑
𝑎𝑛

𝑟0
2

∞
𝑛=0  𝑥𝑛𝑙 ̅

−
𝑛

2 ; 𝑎𝑛 =  (−1)𝑛(𝑛 + 1)          (24) 

𝛤𝑥(𝑟) = 
𝑙 ̅
2

𝑄
∑ 𝑏𝑛𝑥

𝑛𝑙 ̅
−

𝑛

2∞
𝑛=𝑜            (25) 

𝑏𝑛 =  
𝑑𝑛𝛤(𝑟𝑜)

𝑑𝑟𝑜
𝑛

𝑟𝑜
𝑛

𝑛!
             (26) 

𝑉𝑥(𝑟) =  
𝑙 ̅

√𝑄
∑ 𝑐𝑛𝑥

𝑛𝑙−̅
𝑛

2∞
𝑛=0   ; 𝑐𝑛 =  

𝑑𝑛𝑉(𝑟𝑜)

𝑑𝑟𝑜
𝑛

𝑟𝑜
𝑛

𝑛!
         (27) 
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𝐸 =  
1

√𝑄
∑ 𝐸𝑛𝑙−̅𝑛∞

𝑛=−1               (28) 

Where Q is set equal to 𝑙 ̅
2
 at the end of the calculations. With the above expression into (x) one may collect all x-

independent terms of order 𝑙 ̅to imply the leading-order approximation for the energies (Mustafa, 2003). 

𝜀(−𝐼) = 𝑉(𝑟) ± √𝑉(𝑟𝑜)
2 +  𝛤(𝑟

𝑜
) +  

∅

𝑟𝑜
2
         (29) 

Which upon minimization, i.e.  
𝑑𝐸(−𝐼)

𝑑𝑟𝑜
= 0 and 

𝑑2𝐸−𝐼

𝑑𝑟0
2 > 0 

2𝑄 = ℎ(𝑟𝑜) + √ℎ(𝑟𝑜)
2 − 𝑔(𝑟𝑜)          (30) 

Where 

ℎ(𝑟
𝑜
) =  𝑟𝑜

3 [2𝑉(𝑟
𝑜
)𝑉′ + 𝛤′(𝑟

𝑜
) +  𝑟𝑜𝑉

′(𝑟
𝑜
2)]        (31) 

𝑔(𝑟
𝑜
) =  𝑟𝑜

6 [𝛤′(𝑟
𝑜
)2 +  4𝑉(𝑟

𝑜
)𝑉′(𝑟

𝑜
)𝛤′(𝑟

𝑜
) − 4𝛤(𝑟

𝑜
)𝑉′(𝑟

𝑜
)2]       

 (32) 

And primes denote derivatives with respect to 𝑟𝑜, this implies that 𝑥𝑙−̅𝐼 . Coefficients vanish, i.e.  

𝑄𝑎1 + 𝑟𝑜
2𝑏1 + 2𝑟𝑜

2𝐸(−1)𝑐1 = 0           (33) 

Equation (21) reduces to  

[−
𝑑2

𝑑𝑥2 + ∑ 𝛤𝑛𝑥
𝑛𝑙 ̅

−
𝑛−2

2 + (2𝛽
𝑜

∞
𝑛=2 +  1)∑ 𝑎𝑛𝑥

𝑛𝑙 ̅
−

𝑛

2∞
𝑛=0 + 𝛽

𝑜
(𝛽 + 1)∑ 𝑎𝑛𝑥

𝑛𝑙 ̅
−

𝑛

2∞
𝑛=0 ] +

2𝑟𝑜
2

𝑄
∑ ∑ 𝐸(𝑛−𝑝)𝑛+1

𝑝=0
∞
𝑛=0 [𝑐2𝑝𝑥

2𝑝𝑙 ̅
−𝑛

+ 𝑐2𝑝𝑥
2𝑝+1𝑙 ̅

−(𝑛+1)/2
 ]∅𝑘,𝑙(𝑥) = [

𝑟𝑜
2

𝑄
∑ ∑ 𝐸(𝑛−𝑝)𝐸(𝑝)𝑙 ̅

(𝑛+1)𝑛+1
𝑝=−1

∞
𝑛=−1 ]∅𝑘,𝑙(𝑥)    (34)  

Where 𝑇𝑛 =  𝑎𝑛 + 
𝑟𝑜
2

𝑄
𝑏𝑛           (35) 

Equation (34) can be compared with Schrodinger’s equation for one dimensional harmonic oscillator.  

[−
𝑑2

𝑑𝑦2 + 
1

4
𝜔2𝑦2 + ᶓ

𝑜
+ 𝛽(𝑦)] 𝑌𝑘(𝑦) =  𝜇

𝑥
𝑌𝑘(𝑦)        (36) 

Where ᶓ
𝑜
 is constant, 𝛽(𝑦) is a perpetuation like term and  

𝜇
𝑥
=  ᶓ

𝑜
+ (𝑘 + 

1

2
)𝜔 + ∑ 𝜇(𝑛)𝑙 ̅

−𝑛∞
𝑛=1         (37) 

K=0,1,2 … and 2r 

𝜔 =  √12 + 
2𝑟𝑜

4

𝑄
𝛤′′(𝑟𝑜) +

4𝑟𝑜
4

𝑄
𝐸(−1)𝑉′′(𝑟𝑜)          (38) 

One can further show that  

𝐸(0) =  
𝑄

2𝑟𝑜
2(𝐸(−1)− 𝑐𝑜)

[(2𝛽
𝑜
+ 1) + (𝑘 +

1

2
)𝜔]        (39) 

 And choose 𝛽
𝑜 

so that 𝐸(0) = 0 to have  

𝛽
𝑜
=  −

1

2
[1 + (𝑘 +

1

2
)𝜔]           (40) 

Equation (35) becomes 

[−
𝑑2

𝑑𝑥2 + ∑ (𝑉(𝑛)(𝑥)𝑙 ̅
−

𝑛

2 + 𝐽(𝑛)(𝑥)𝑙 ̅
−𝑛

+ 𝐾(𝑛)(𝑥)𝑙 ̅
−(𝑛+

1

2
)
+ ∈(𝑛) 𝑙 ̅

−(𝑛+1)
)∞

𝑛=0 ]∅𝑘,𝑙(𝑥) = 0   (41) 

From equation (41), the following equations were obtained:  

𝑉(0)(𝑥) =  𝑇2𝑥
2 + (2𝛽

𝑜
+ 1)𝑎𝑜         (42) 

𝑉(1)(𝑥) =  𝑇3𝑥
3 + (2𝛽

𝑜
+ 1)𝑎1𝑥          (43) 

𝑉(𝑛)(𝑥) =  𝑇𝑛+2𝑥
𝑛+2 + (2𝛽

𝑜
+ 1)𝑎𝑛𝑥

𝑛 + 𝛽
𝑜
(𝛽

𝑜
+ 1)𝑎𝑛−2𝑥

𝑛−2  𝑛 ≥ 2    (44) 

𝐽(𝑛)(𝑥) = (
2𝑟𝑜

2

𝑄
)∑ 𝐸(𝑛−𝑝)𝑛+1

𝑝=0 𝑐2𝑝𝑥
2𝑝        (45) 

𝐾(𝑛)(𝑥) = (
2𝑟𝑜

2

𝑄
)∑ 𝐸(𝑛−𝑝)𝑛+1

𝑝=0 𝑐2𝑝+1𝑥
2𝑝+1         (46) 

∈(𝑛)= (
𝑟𝑜
2

𝑄
)∑ 𝐸(𝑛−𝑝)𝑛+1

𝑝=−1 𝐸𝑝          (47) 

Using closely PSLET recipe for the k-nodal wave function and define  

∅𝑘,𝑙(𝑥) =  𝐹𝑘,𝑙(𝑥)𝑒𝑥𝑝(𝑈𝑘𝑙(𝑥))          (48) 

Where  
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𝐹𝑘,𝑙(𝑥) =  ∑ ∑ 𝐴𝑝,𝑘

(𝑛)
 𝑥𝑝𝑙 ̅

−𝑛/2
 𝑘=1

𝑝=0
∞
𝑛=0          (49) 

𝑈𝑘,𝑙
′ (𝑥) =  ∑ (𝑈𝑘,𝑙

(𝑛)(𝑥)𝑙 ̅
−

𝑛

2 + 𝐺𝑘,𝑙

(𝑛)(𝑥)𝑙 ̅
−

𝑛+1

2 )∞
𝑛=0         (50) 

With  

𝑈𝑘,𝑙

(𝑛)(𝑥) =  ∑ (𝐷𝑝,𝑛,𝑘𝑥
2𝑝−1);       𝐷0,𝑛,𝑘 = 0𝑛+1

𝑝=0         (51) 

𝐺𝑘,𝑙

(𝑛)(𝑥) =  ∑ 𝑐𝑝,𝑛,𝑘𝑥
2𝑝𝑛+1

𝑝=0            (52) 

Equation (31) reads  

𝐹𝑘,𝑙(𝑥) ∑ [𝑉(𝑛)(𝑥)]∞
𝑛=0 𝑙 ̅

−
𝑛

2 + 𝐽(𝑛)(𝑥)𝑙 ̅
−𝑛

+ 𝐾(𝑛)(𝑥)𝑙 ̅
−(𝑛+

1

2
)
− ∈(𝑛) 𝑙 ̅

−(𝑛+1)
] − 𝐹𝑘,𝑙(𝑥)[𝑈𝑘,𝑙

′′ (𝑥) + 𝑈𝑘,𝑙
′ (𝑥)𝑈𝑘,𝑙

′ (𝑥) ] −

 2𝐹𝑘,𝑙
′ (𝑥)𝑈𝑘,𝑙

′ (𝑥) − 𝐹𝑘,𝑙
′′ (𝑥) =  0                      (53) 

Where the primes denote derivatives with respect to x. one may also eliminate 𝑙-̅ dependence from equation (53) to 

obtain four exactly solvable recursive relations.  

 

Establishing an Eigen Function from the Power Law Potential  

Consider an equally mixed scalar and vector power law potential of the form  

𝑉(𝑟) =  𝑔𝑜𝑟
𝑎 − 𝑉𝑜          (54) 

Where 𝑎 =
𝑚𝑜

2𝑚𝑞
          

Thus  

𝑉(𝑟) =  
1

4
(𝑔𝑜𝑟

𝑎 − 𝑉𝑜)          (55) 

But from equation (a) and (b) above we know that:  

𝛤(𝑟) =  −𝑉𝑟(𝑟) + 𝑆𝑟(𝑟) + 2𝑚𝑆(𝑟) + 𝑚2 + 𝑈(𝑟)  

𝑈(𝑟) =  
𝜆

4𝑚
[𝑦′(𝑟) − 

2𝐾𝑦′(𝑟)

𝑟
+ 

3𝑦′(𝑟)2

4𝑚
]        (56)  

For an equally mixed potential; 𝑈(𝑟) = 0; 𝑦(𝑟) = 𝑉(𝑟) − 𝑆(𝑟) 

But since 𝑉(𝑟) = 𝑆(𝑟) 

𝑦(𝑟) = 𝑉(𝑟) − 𝑆(𝑟) =  0          (57) 

The equation (56) yields 

𝛤(𝑟) =  −𝑉(𝑟)2 + 
𝐴1

2

𝑟2 + 𝑆(𝑟)2 − 
𝐴2

2

𝑟2 − 2𝑚 (
1

4
(𝑔𝑜𝑟

𝑎 − 𝑉𝑜)) + 𝑚2      (58) 

We have developed that  𝑉(𝑟) = 𝑆(𝑟), hence  

𝛤(𝑟) =  
𝐴1

2

𝑟2 − 
𝐴2

2

𝑟2 − 2𝑚 (
1

4
(𝑔𝑜𝑟

𝑎 − 𝑉𝑜)) + 𝑚2       (59) 

Where 𝐴1 =  𝐴2 𝑎𝑛𝑑 𝑚 =  𝑚𝑜 

𝛤(𝑟) = 2𝑚 (
1

4
(𝑔𝑜𝑟

𝑎 − 𝑉𝑜)) + 𝑚𝑞
2         (60) 

𝛤(𝑟) = [
𝑚𝑞𝑔𝑟𝑎−𝑉𝑜𝑚𝑞

2
] +  𝑚𝑞

2         (61) 

Differentiating the above equation (61) we have  

𝛤′(𝑟) =
𝑎𝑚𝑞𝑔𝑟(𝑎−1)

2
          (62) 

Differentiating the potential;  𝑉(𝑟) =  
1

4
(𝑔𝑜𝑟

𝑎 − 𝑉𝑜) yields 

𝑉′(𝑟) =  
1

4
𝑎𝑔1𝑟

(𝑎−1)          (63) 

Recall that  

2𝑄 = ℎ(𝑟) + √ℎ(𝑟)2 − 𝑔(𝑟)         (64) 

But 

𝑔(𝑟) =  𝑟6 [
4𝑚2𝐴2

𝑟4 + 4 [(−
𝐴

𝑟
) (

𝐴

𝑟2) (
2𝑚𝐴

𝑟2 )] − 4 (
−2𝑚𝐴

𝑟
+ 𝑚2) (

𝐴2

𝑟4)]     (65) 

𝑔(𝑟) =  𝑟6 [
4𝑚2𝐴2

𝑟4 − 
8𝐴3𝑚

𝑟5 +
8𝐴3𝑚

𝑟5  −
4𝑚2𝐴2

𝑟4 ]        (66) 

𝑔(𝑟) = 0  
Where ℎ(𝑟) =  𝑟3[2𝑣(𝑟)𝑉′(𝑟) +  𝛤(𝑟) + 𝑟𝑉′(𝑟)2]     

ℎ(𝑟) =  𝑟3 [2 (
𝑎𝑔1

2𝑟(2𝑞−1)

16
− 

𝑎𝑔1𝑉𝑜𝑟(𝑎−1)

16
) + 

𝑎𝑚𝑞𝑔1𝑟(𝑎+2)

16
+ 

𝑎2𝑔 1
2𝑟(2𝑎+2)

16
]      (67) 

Thus:  
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2𝑄 = ℎ(𝑟) + √ℎ(𝑟)2 − 0 

𝑄 = ℎ(𝑟) = 16𝑄(2𝑎𝑔1
2 + 𝑎2𝑔1

2)𝑟(2𝑎+2) + (8𝑎𝑔1 − 2𝑎𝑔1𝑉𝑜)𝑟
(𝑎+2)     (68) 

𝑄 = (0.5𝑎𝑔1
2 + 0.065𝑎2𝑔1

2)𝑟(2𝑎+2) + (𝑎𝑔1 − 0.5𝑎𝑔1𝑉𝑜)𝑟
(𝑎+2)     (69) 

Recall 

𝐸(−1) =  [
1+ 𝑟4𝛤′′(𝑟)

4
]

𝑄

𝑟2
          (70) 

Upon minimization,  
𝑑𝐸(−1)

𝑑𝑟
= 0            (71) 

𝑄 = 0.125(𝑎 − 1)𝑎2𝑚𝑞𝑔1𝑟
(𝑎+2)         (72) 

From the above expressions, we have  

𝑟 =  [
0.125(𝑎−1)𝑎2𝑚𝑞𝑔1−(𝑎𝑔1− 0.5𝑎𝑔1𝑉𝑜

0.5𝑎𝑔1
2+ 0.0625𝑎2𝑔1

2 ]

1

𝑎
        (73) 

Recall that  
𝜔2

4
= 3 + 

𝑟4

2𝑄
𝛤′′(𝑟)          (74) 

Recall that  

𝑄 = 𝑙 − (
1

2
) [1 + (𝑘 +

1

2
)𝜔]

2

         (75) 

Hence Q becomes  

𝑄 =  [𝑙 +
1

2
(1 + (𝑛 − 𝑙 −

1

2
) (

12𝑎+8

𝑎
)
2

)]
2

        (76) 

𝐸 =  
1

√𝑄
∑ 𝐸(𝑛)𝑙𝑛̅∞

𝑛=1           (77) 

= 
1

√𝑄
𝐸−1𝑙 ̅           (78) 

𝐸 =  𝐸(−1) 

But  

𝐸(−1) = 𝑉(𝑟) ± √𝑉(𝑟)2 + 𝛤′ + 
𝑄

𝑟2
        (79) 

And 𝑚 = 2𝐸           (80) 

An algorithm was written using equations (61), (73), (79) and (80) in an interactive problem-solving environment of 

Maple-18. The parameters in Table 1 as well as the respective bound state mass of 𝛾, 𝜑, ∅ 𝑎𝑛𝑑 𝜌 were then obtained 

and the results are shown in Table 2 to 6.  

 

RESULTS AND DISCUSSION 

Results  

Table 1: Parameters generated for light, mixed and heavy mesons 

Light Meson (GeV) Mixed meson (GeV) Heavy meson (GeV) 

𝒈
𝟏
 𝑣0 𝑟 𝑔

1
 𝑣0 𝑟 𝑔

1
 𝑣0 𝑟 

0.026 0.745 5.038 0.264 1.035 8.765 0.065 0.167 15.783 

 

Table 2: Mass spectrum for 𝜸(𝒃𝒃̅) system (GeV) 

Meson Experiment (Sharma &Fiase, 2003) (Jona, 1983) This work 

𝜸(𝟏𝒔) 9.46037± 0.21 9.46 9.4336 9.9252 

𝜸(𝟐𝒔) 10.0233 ± 0.31 10.0235 9.9944 9.9660 

𝜸(𝟑𝒔) 10.3553 ± 0.5 10.3426 10.3230 10.0434 

𝜸(𝟒𝒔) 10.580 ± 3.5 10.5695 10.5581 10.1564 

𝜸(𝟓𝒔)  10.7468 10.7418 10.3039 

 

Table 2 contains the mass spectrum of the bottomium 

(bb̅) system in GeV.  The result for this system 

compares well with experimental results and other 

works. However, there are some variations at 4s and 5s 

orbitals where the result in this work is slightly 

different. 
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Table 3: Mass spectrum for 𝜳(𝒄𝒄̅) system (GeV) 

Meson Experiment (Sharma &Fiase, 2003) (Jona, 1983) This work 

ѱ(𝟏𝒔) 3.097± 0.20 3. 097 3.0672 3.9715 

ѱ(𝟐𝒔) 3.686 ± 0.03 3.6867 3.6620 4.0222 

ѱ(𝟑𝒔) 4.030 ± 0.05 4.0398 4.0096 4.1151 

ѱ(𝟒𝒔) 4.415 ± 0.60 4.3047 4.2579 4.2476 

ѱ(𝟓𝒔) 4.417 ± 0.01 4.5181 4.4952 4.4161 

The mass spectrum for charmonium (𝑐𝑐̅) system in Table 3, the 1s orbital is significantly different when compared 

with the experimental result and other works. However, other orbits compared well. 

 

Table 4: Mass spectrum for 𝝆(𝒖𝒖̅) system (GeV) 

Meson Experiment  (Jona, 1983) This work 

𝝆(𝟏𝒔) 0.7685± 0.21  0.770 0.7002 

𝝆(𝟐𝒔) 1.600  1.402 1.4136 

𝝆(𝟑𝒔) _  1.772 2.1821 

The up quark shown in Table 4 compared well with Jena, 1983. 

 

Table 5: Mass spectrum for ∅(𝒔𝒔̅) system (GeV) 

Meson Experiment (Sharma &Fiase, 2003) (Jona, 1983) This work 

∅(𝟏𝒔) 1.096± 0.21 1.020 1.004 1.1382 

∅(𝟐𝒔) 1.65 1.8352 1.5532 1.3712 

∅(𝟑𝒔) 1.90 2.3669 1.8804 2.2067 

The result of the strange quark is shown in Table 5 and there is no significant different. 

 

Table 6: Mass spectrum for (𝒄𝒖̅) system (GeV)  

Meson system Experiment (Jona, 1983) This works 

𝒄𝒖̅(𝟏𝒔) 2.010± 0.5 1.9716 1.7065 

𝒄𝒖̅(𝟐𝒔) - - 1.9228 

𝒄𝒖̅(𝟑𝒔) - - 2.2605 

𝒄𝒖̅(𝟒𝒔) - - 2.6705 

𝒄𝒖̅(𝟓𝒔) - - 3.1228 

The result for the mixed quark shown in Table 6 also compared well. 

 

Discussion 

This work employed the Dirac equation and PSLET 

expansion technique to derive a Schrodinger-like 

equation. A non-QCD based power law potential was 

then solved in the Schrodinger equation to obtain the 

eigen- values of Dirac equation as shown in the Table 2-

5 above. The mass spectrum for bottom quark, charm 

quark, up quark, strange quark and mixed quark agreed 

with experimental data, Sharma and Fiase, 2003 and 

Jena, 1983. There are however, some discrepancies as 

observed 1s, 4s and 5s Table 2, 1s in Table 3 and 2s 

Table5. These variations may be due the fact that only 

first energy correction was considered in this work.  

 

CONCLUSION 

This work has established that a non-QCD based power 

law potential developed by Sharma and Fiase as 

discussed earlier can effectively use in the PSLET 

expansion technique to mimic the spectra of all meson 

systems. The mass spectrum of meson was calculated 

implementing the non-columbic power law potential in 

the Dirac equation. Regardless of the nature of the non-

columbic potential which is quite uncomfortable and 

thus contradicts the predictions of the QCD, the results 

were still in agreement with experimental results and 

existing works.  
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