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ABSTRACT 

The standard radioactive decay equation describes exponential decay but neglects 

possible production mechanisms that may arise in complex systems. This study 

investigates a modified radioactive decay rate equation that incorporates a 

quadratic production term, allowing for the modeling of coupled decay–

production dynamics. The governing nonlinear ordinary differential equation was 

solved analytically for limiting cases and numerically using the fourth-order 

Runge–Kutta (RK4) method. Numerical simulations were performed for varying 

values of the production parameter β, while keeping the decay constant fixed, 

allowing for a direct comparison between standard decay and modified decay 

behaviors. The results show close agreement between analytical and numerical 

solutions at low β values, confirming the accuracy of the RK4 method. As β 

increases, deviations from simple exponential decay become significant, with the 

emergence of steady-state solutions where production balances decay. These 

steady states occur when the production term becomes comparable to the linear 

decay term. The study demonstrates that the modified model captures decay 

dynamics not represented by the standard equation and highlights the sensitivity 

of system behaviors to the quadratic production parameter. The findings confirm 

the suitability of the RK4 method for solving nonlinear radioactive decay models 

and provide a framework for extending the analysis to more complex decay 

systems involving spatial dependence or coupled nuclide chains. 

 

INTRODUCTION 

Radioactivity is a fundamental nuclear process through 

which unstable atomic nuclei transform into more stable 

configurations. This transformation occurs through 

several decay mechanisms, including alpha decay, beta 

decay, gamma emission, and spontaneous fission, often 

accompanied by the release of high-energy particles or 

photons. Radioactive decay plays a critical role in nuclear 

physics, astrophysics, medical physics, radiometric 

dating, and reactor technology, where accurate modeling 

of decay processes is essential for both theoretical 

understanding and practical applications (Mumpower et 

al., 2016). 

The Standard radioactive decay is the spontaneous, 

random process by which unstable atomic nuclei lose 

energy by emitting radiation (alpha particles, beta 

particles, or gamma rays) to achieve a more stable state. 

This process is characterized by first-order kinetics, 

meaning the rate of decay is proportional to the number 

of atoms present, resulting in a constant half-life for any 

given isotope (Mumpower et al., 2016). While generally 

reliable, radioactive decay has several limitations in 

theory and application: randomness at atomic level, time-

range limitations (Dating), environmental assumptions 

(Carbon-14), environmental interference, measurement 

limits and system closure (Dating). The motivation for 

introducing nonlinear modifications to the standard, 

linear radioactive decay rate equation (
dN

dt
= −𝜆𝑁) ) 

stems from the need to model complex physical 

phenomena that deviate from simple exponential decay, 

such as high-intensity, non-stationary conditions, or 
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coupling between multiple decay processes. The Fourth 

Order Runge-Kutta (RK4) method is utilized to solve 

these modified equations due to its high accuracy, 

stability, and capability to handle non-linear ordinary 

differential equations (ODEs) where analytical solutions 

are unavailable.  

The behavior of radioactive nuclides is commonly 

characterized using the decay constant 𝜆 or the half-

life𝑇1/2, which provides a measure of nuclear instability. 

The half-life is defined as the time required for half of the 

radioactive nuclei in a sample to decay and is related to 

the decay constant by 

𝑇1/2 =
ln 2

𝜆
.    (1) 

The classical radioactive decay law assumes that the rate 

of decay is directly proportional to the number of 

undecayed nuclei present at any given time. This 

assumption leads to the first-order linear ordinary 

differential equation 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁,    (2) 

Where 𝑁(𝑡)represents the number of radioactive nuclei 

at time𝑡. The analytical solution of Equation (2) yields 

the well-known exponential decay law 

𝑁(𝑡) = 𝑁0𝑒−𝜆𝑡 ,    (3) 

Where 𝑁0 is the initial number of nuclei? This model has 

been successfully applied across a wide range of 

problems due to its simplicity and exact solvability. 

Despite its broad applicability, the standard radioactive 

decay equation neglects additional physical processes 

that may influence decay dynamics in realistic systems. 

In many nuclear and physical environments, decay may 

be accompanied by production mechanisms, nonlinear 

interactions, decay chains, or feedback processes that 

cannot be adequately represented by a purely linear decay 

law. Such effects are particularly relevant in complex 

decay systems, nuclear fuel cycles, population dynamics 

analogies, and nonlinear physical processes, where 

deviations from simple exponential behavior may occur. 

To overcome these limitations, modified radioactive 

decay models have been introduced by extending the 

standard decay equation to include nonlinear terms. One 

such extension is the modified radioactive decay rate 

equation given by 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ± 𝛽𝑁2,   (4) 

Where 𝛽is a parameter that quantifies the strength of the 

quadratic contribution? The linear term −𝜆𝑁 represents 

the conventional radioactive decay process, while the 

quadratic term ±𝛽𝑁2 introduces a nonlinear dependence 

on the number of nuclei. The positive sign corresponds to 

a production or interaction mechanism that may 

counteract decay, whereas the negative sign enhances the 

depletion rate. This formulation allows the model to 

describe more complex decay–production dynamics, 

including chain reactions, nonlinear feedback effects, and 

equilibrium or steady-state solutions, which are not 

captured by the standard exponential decay model 

(Cabral and Barros, 2015; Martin and Shaw, 2019). 

Analytical solutions of nonlinear differential equations 

such as Equation (4) are often challenging and may only 

be obtainable under restrictive assumptions or for special 

cases. Although closed-form solutions can be derived for 

some parameter regimes using partial fraction 

decomposition, the general behavior of the system—

particularly for varying parameter values—requires 

numerical investigation. Consequently, reliable 

numerical methods are essential for exploring the full 

dynamics of the modified radioactive decay equation. 

Among the available numerical techniques for solving 

ordinary differential equations, the fourth-order Runge–

Kutta (RK4) method is widely regarded as one of the 

most effective single-step methods due to its high 

accuracy, numerical stability, and computational 

efficiency. The RK4 method does not require higher-

order derivatives, is self-starting, and provides fourth-

order accuracy with relatively moderate computational 

cost. These properties make it particularly suitable for 

solving nonlinear decay equations where analytical 

solutions are either unavailable or insufficient for 

capturing detailed system behavior. 

The application of Runge–Kutta methods to radioactive 

decay and related physical systems has been well 

documented in the literature. Ahmed (2001) successfully 

employed a fourth-order Runge–Kutta algorithm to 

model fission product accumulation and radioactive 

decay chains, demonstrating good agreement with 

established reactor physics codes. Similarly, numerical 

studies of radioactive decay, population growth models, 

and nonlinear dynamical systems using higher-order 

Runge–Kutta schemes have shown excellent accuracy 

when compared with analytical solutions and improved 

performance over simpler methods such as Euler’s 

scheme (Anita et al., 2021; Sara et al., 2022; Aroloye and 

Owa, 2024). 

Beyond nuclear physics, equations of the form given in 

Equation (4) arise in a variety of scientific disciplines. In 

population dynamics, similar nonlinear terms describe 

interaction-driven growth or depletion processes. In 

chemical kinetics, quadratic terms may represent 

bimolecular reactions, while in applied mathematics and 

nonlinear wave propagation, such equations model 

feedback mechanisms and energy transfer processes 

(Otor et al., 2017; Otor et al., 2018). These cross-

disciplinary applications further highlight the importance 

of understanding the qualitative and quantitative 

behavior of modified decay equations. 

Motivated by the need to accurately model complex 

radioactive decay processes, this study presents an 

analytical and numerical investigation of the modified 

radioactive decay rate equation using the fourth-order 

Runge–Kutta method. The study aims to examine the 

influence of the decay constant 𝜆and the quadratic 
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parameter 𝛽on the temporal evolution of radioactive 

nuclei, to compare numerical solutions with analytical 

results where applicable, and to identify conditions under 

which steady-state or equilibrium behavior emerges. By 

doing so, the work seeks to deepen understanding of 

nonlinear decay dynamics and to demonstrate the 

effectiveness of the RK4 method as a robust numerical 

tool for solving modified radioactive decay models 

relevant to nuclear physics and related scientific fields.  

 

Theoretical Framework 

Radioactive decay is a fundamental nuclear process in 

which unstable atomic nuclei transform into more stable 

configurations through the emission of particles or 

radiation. When large ensembles of nuclei are 

considered, the decay process can be described 

deterministically using ordinary differential equations, 

forming the theoretical basis for analytical and numerical 

modeling of radioactive systems. 

 

Standard Radioactive Decay Model 

The standard radioactive decay law assumes that the 

probability of decay per unit time is constant and 

proportional to the number of undecayed nuclei. This 

leads to the first-order linear differential equation 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁,    (5) 

Where 𝑁(𝑡)is the number of radioactive nuclei at time 

𝑡and 𝜆is the decay constant. Solving Equation (5) with 

the initial condition 𝑁(0) = 𝑁0 yields the analytical 

solution 

𝑁(𝑡) = 𝑁0𝑒−𝜆𝑡 .    (6) 

The decay constant is related to the half-life 𝑇1/2 of the 

nuclide by 

𝜆 =
ln 2

𝑇1/2
.     (7) 

Equations (5) and (6) describe exponential decay and 

form the foundation of classical radioactive decay theory. 

 

Modified Radioactive Decay Rate Equation 

While the standard decay model is applicable to isolated 

systems, it does not account for additional mechanisms 

such as production processes, interaction effects, or 

nonlinear feedback. To address these limitations, the 

radioactive decay equation is extended to include a 

quadratic term, leading to the modified radioactive decay 

rate equation 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ± 𝛽𝑁2.   (8) 

Here, 𝛽 is a parameter that characterizes the strength of 

the nonlinear contribution. The linear term represents 

conventional radioactive decay, while the quadratic term 

introduces nonlinear decay–production dynamics. The 

negative sign corresponds to enhanced depletion, 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 − 𝛽𝑁2,   (9) 

Whereas the positive sign represents a competing 

production mechanism, 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 + 𝛽𝑁2.   (10) 

The inclusion of the quadratic term transforms the 

governing equation into a nonlinear ordinary differential 

equation, allowing the model to represent complex decay 

behavior not captured by the standard exponential law. 

 

Steady-State Condition 

For the modified decay equation with a positive quadratic 

term, equilibrium solutions arise when the rate of decay 

balances the rate of production. Setting. 
𝑑𝑁

𝑑𝑡
= 0,     (11) 

In Equation (10) gives 

−𝜆𝑁 + 𝛽𝑁2 = 0,    (12) 

Which yields the steady-state population 

𝑁ss =
𝜆

𝛽
.     (13) 

This expression provides the theoretical basis for the 

steady-state behavior observed in the numerical 

simulations. 

 

Relevance to Numerical Methods 

The nonlinear nature of the modified radioactive decay 

equations generally precludes simple closed-form 

solutions for arbitrary parameter values. Consequently, 

numerical methods are required to investigate the time 

evolution of the system. The theoretical formulation 

presented in this section directly motivates the 

application of the fourth-order Runge–Kutta (RK4) 

method described in the Methods section, ensuring 

consistency between the governing equations and the 

numerical solution procedure. 

Each radioactive substance has a characteristic decay 

period or half-life. A half-life is the interval of time 

required for one-half of the atomic nuclei of a radioactive 

sample to decay (Yeşiloğlu, 2019). The radioactive 

isotope cobalt 60, which is used in radiation cancer 

therapy, has, for example, a half-life of 5.26 years. Thus, 

after that interval, a sample originally containing 16 

grams of cobalt 60 would contain only 8 grams of cobalt 

60 and would emit only half as much radiation. After 

another interval of 5.26 years, the sample would contain 

only 4 grams of cobalt 60. Half-lives can range from 

thousands of years to milliseconds. 

Again, it is a common practice to use the half-life (T1/2) 

instead of the decay constant (λ) to indicate the degree of 

instability or the decay rate of a radioactive nuclide. This 

is defined as the period of time in which half of the 

radioactivity has disappeared (half of the nuclei have 

disintegrated) (Li et al., 2015).  

T1/2 =(
−1

𝜆
) 𝐼𝑛 (

1

𝜆
)    (14) 

From which:  𝜆 =
𝐼𝑛2

𝑇1∕2
=

0,693

𝑇1∕2
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The mean life of a nuclide is the sum of the lifetimes of a 

certain number of nuclei (before they have all 

disintegrated) divided by the number of nuclei. During 

the time interval dt, some dN nuclei disintegrate. These 

"lived" during a period t, which amounts to a total 

lifetime for dN nuclei (Rozanski et al., 2001) of  

𝑁 = 𝑁0𝑒−𝜆𝑡     

𝑡. 𝑑𝑁 = 𝑡. 𝜆𝑁. 𝑑𝑡    (15) 

Integrating over all nuclei (N) gives the mean life (time): 

𝜏 =
1

𝑁0 ∫ 𝑡. 𝜆𝑁. 𝑑𝑡 = 𝜆 ∫ 𝑡. 𝑒−𝜆𝑡𝑑𝑡 = 𝜆 {−
𝑡

𝜆
𝑒−𝜆𝑡|

∞
0

+
∞

0

∞

0
1

𝜆
∫ 𝑒−𝜆𝑡∞

0
𝑑𝑡} = 𝜆 {0 +

1

𝜆
(−

1

𝜆
𝑒−𝜆𝑡| ∞

0 )} =
1

𝜆
 (16) 

As an example, the mean life of a 14C nucleus with T1/2 = 

5730 a is 8267 years. Then λ = 1/8267, which means that 

a sample activity decreases by 1‰ in about 8 years; a 3H 

sample activity (T1/2 = 12.43 a) decreases by 5.6% per 

year. 

The modified Inverse Square Model was simulated using 

the fourth order Runge-Kutta method implemented 

through the RK4 solver of the Mat lab (Igba and Otor, 

2018), and the interaction between lower and upper 

atmosphere, employing daily data of Total Ozone 

Column (TOC) decay and atmospheric parameter (cloud 

cover) over Nigeria from 1998-2012 was investigated by 

Audu et al., 2023 using a decay parameter to evaluate the 

fluctuation of climate change implemented using RK4. 

Results reveal that TOC increased spatially from the 

coastal region to the northeastern region of the country. 

Pure semiconductors usually possess a single optical 

absorption within the interband region; the Tauc plot has 

been a commonly used technique in the estimation of 

their energy bandgaps (Perverga et al., 2022) following 

the decay model system particularly RK4 to simulate the 

movement of electron and holes when they are not in a 

simple steady state.  

To solve this equation numerically, one can use various 

numerical methods such as Euler's scheme, the Runge-

Kutta method, the predictor-corrector scheme, or other 

advanced numerical techniques like the finite difference 

method or finite element method. These methods involve 

discretizing time into small intervals and approximating 

the derivative, 
dN

dt
 using difference approximations, by 

iteratively updating the quantity N at each time step, one 

can obtain a numerical solution that approximates the 

behavior of the modified radioactive decay equation. The 

specific choice of numerical method will depend on the 

desired accuracy, computational resources available, and 

the nature of the problem you are trying to solve. 

The equation is likely to be of interest in various 

scientific and mathematical contexts, such as Radioactive 

Decay. The equation is a modification of the standard 

radioactive decay equation, which models the decay of 

radioactive isotopes (Martin and Shaw, 2019).  By 

introducing the quadratic decay component, it might 

apply to scenarios involving complex decay processes 

such as; The population (Dynamics) modeling to 

describe scenarios where the growth or decline of a 

population is influenced by both exponential and 

quadratic factors, in some chemical reactions, the 

concentration of a species might decay following a 

similar pattern, and this equation could be relevant in 

those situations, in applied Mathematics, the equation 

falls under the domain of ordinary differential equations, 

and its solutions can be studied and analyzed using 

various mathematical techniques. 

An educational strategy targeting biomedical 

engineering/physics students focusing on the calculation 

of isotope concentrations and activities in radioactive 

decay chains, which is capable of demonstrating the 

behavior of these isotopes over time, by using an iterative 

process and basic mathematical operations, was carried 

out by Ref. (Balbina et al., 2025). The computational 

modeling of the radioactive decay problem by solving 

ordinary differential equation systems using the Runge-

Kutta fourth-order numerical method was treated. 

The specific objectives of the study could include: 

Analyzing the behavior of the modified radioactive decay 

equation and understanding the impact of the 

parameters 𝛼 and 𝛽 on the decay process, adapting or 

developing numerical algorithms to solve the modified 

radioactive decay equation accurately and efficiently, 

implementing the numerical methods using 

programming language or software tool, analyzing and 

interpreting the results obtained from the numerical 

solutions, including the decay behavior of the radioactive 

material under different parameter values and comparing 

the numerical results with known analytical solution or 

other reference methods to assess the accuracy of the 

numerical techniques employed. 

The significance of the equation lies in its ability to 

model more complex decay processes compared to the 

simple exponential decay equation. Depending on the 

values of parameters 𝜆 and 𝛽 and the initial conditions, 

the solutions of this equation might exhibit diverse 

behaviors, such as stable equilibrium, oscillations, or 

asymptotic decay, providing valuable insights into the 

dynamics of the system it represents. The study of this 

equation can lead to a deeper understanding of natural 

processes and phenomena in various scientific 

disciplines. Therefore, we shall analyze the physical or 

mathematical meaning of the equation and choose 

appropriate values for 𝜆 and 𝛽 accordingly.  

 

MATERIALS AND METHODS 

The modified radioactive decay equation is a 

fundamental concept in nuclear physics and radiometric 

dating. It describes the behavior of unstable atomic nuclei 

as they undergo radioactive decay, which involves the 

spontaneous transformation of one element into another 

while emitting radiation. This equation incorporates 

various factors that influence the rate of decay and is 
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crucial for understanding the age of rocks, minerals, and 

archaeological artifacts. It can be expressed as:  

 
dN

dt
= −𝜆𝑁 ± 𝛽𝑁2    

This equation (𝑤ℎ𝑒𝑟𝑒 ± 𝛽𝑁2 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒) 

reflects the probabilistic nature of radioactive decay, with 

the decay constant determining the likelihood of an 

individual nucleus decaying in a given unit of time. The 

higher the decay constant, the faster the nuclei decay, 

resulting in a shorter half-life. Understanding this 

equation is essential for various scientific and practical 

applications, including dating ancient materials, tracking 

the behavior of isotopes in environmental studies, and 

ensuring the safety of nuclear reactors and waste storage. 

It also serves as a reminder of the remarkable and 

complex nature of the subatomic world, where seemingly 

unpredictable events can be described and understood 

through mathematical models. The analytical solution of 

the standard radioactive decay equation is obtained as 

follows: 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁    (17) 

∫
𝑑𝑁

𝑁
= −𝜆 ∫ 𝑑𝑡     

𝑙𝑜𝑔𝑒𝑁 = −𝜆𝑡 + 𝐶   (18) 

If the initial number of nuclei is 𝑁0 

And 𝑁 = 𝑁0 when𝑡 = 0, then (8) becomes 

  𝑙𝑜𝑔𝑒𝑁0 = 𝐶    (19) 

𝑙𝑜𝑔𝑒𝑁 = −𝜆𝑡 + 𝑙𝑜𝑔𝑒𝑁0    

𝑙𝑜𝑔𝑒𝑁 − 𝑙𝑜𝑔𝑒𝑁0 = −𝜆𝑡    

𝑙𝑜𝑔𝑒 (
𝑁

𝑁0
) = −𝜆𝑡     

𝑁

𝑁0
= 𝑒−𝜆𝑡     

𝑁 = 𝑁0𝑒−𝜆𝑡    (20) 

Also, the analytical solution of the modified radioactive 

decay equation is obtained as follows: 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ± 𝛽𝑁2    

 

Case I: 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 + 𝛽𝑁2   (21)  

 
𝑑𝑁

−𝜆𝑁+𝛽𝑁2 = 𝑑𝑡     

∫
𝑑𝑁

(−𝜆𝑁+𝛽𝑁2)
= ∫ 𝑑𝑡 = 𝑡 + 𝑐1   

∫
𝑑𝑁

(−𝜆𝑁+𝛽𝑁2)
= 𝑡 + 𝐶1    

Integrating the left-hand side using partial fractions 
1

𝑁(−𝜆+𝛽𝑁)
=

𝐴

𝑁
+

𝐵

(−𝜆−𝛽𝑁)
    

Where,  𝐴 =
−1

𝜆
 and =

𝛽

𝜆
 , at 𝑁 = 𝑁0 when 𝑡 = 0 gives 

N(𝑡) = 𝑁0 =
𝜆

𝛽−𝑒𝜆𝐶1
   (22) 

Which result to 

𝐶1 =
1

𝜆
𝐼𝑛 (𝛽 −

𝜆

𝑁0
)   (23) 

 

 

 

Case II: 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 − 𝛽𝑁2   (24) 
𝑑𝑁

(−𝜆𝑁−𝛽𝑁2)
= 𝑑𝑡     

∫
𝑑𝑁

(−𝜆𝑁−𝛽𝑁2)
= ∫ 𝑑𝑡 + 𝐶2    

∫
𝑑𝑁

(−𝜆𝑁−𝛽𝑁2)
= 𝑡 + 𝐶2    

Using partial fractions to integrate the left-hand side 
1

𝑁(−𝜆−𝛽𝑁)
=

𝐴

𝑁
+

𝐵

(−𝜆−𝛽𝑁)
   (25) 

Where, 𝐴 =
−1

𝜆
  and 𝐵 =

−𝛽

𝜆
  when 𝑁 = 𝑁0 when 𝑡 = 0, 

then  

N(𝑡) = 𝑁0 =
𝜆

𝑒𝜆𝐶2−𝛽
   (26) 

By rearranging (16) 

𝐶2 =
1

𝜆
𝐼𝑛 (

𝜆

𝑁0
+ 𝛽)   (27) 

The numerical solution of the modified radioactive decay 

equation is obtained as follows: 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ± 𝛽𝑁2    

Using the Runge-Kutta fourth-order method 

𝑦𝑛+1 = 𝑦0 +
1

6 
[𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4] (28) 

Where, 

𝑘1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛)    (29) 

𝑘2 = (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
)   (30) 

𝑘3 = (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
)   (31) 

𝑘4 = (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 + 𝑘3)   (32) 

Applying the fourth-order Runge-Kutta method to solve 

the modified radioactive decay equation. 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ± 𝛽𝑁2    

𝑑𝑁

𝑑𝑡
= 𝑓(𝑡, 𝑁0) = −𝜆𝑁0 ± 𝛽𝑁0

2  (33) 

Initializing values; 𝑁(0) = the initial value of nuclei 

𝑁𝑛+1 = 𝑁0 +
1

6 
[𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4] (34) 

𝑘1 = ℎ. (−𝜆𝑁0 ± 𝛽𝑁0
2)   (35) 

𝑘2 = ℎ. (−𝜆 (𝑁0 +
𝑘1

2
) ± 𝛽 (𝑁0 +

𝑘1

2
)

2

) (36) 

𝑘3 = ℎ. (−𝜆 (𝑁0 +
𝑘2

2
) ± 𝛽 (𝑁0 +

𝑘2

2
)

2

) (37) 

𝑘4 =  ℎ. (−𝜆(𝑁0 ± 𝑘3) ± 𝛽(𝑁0 ± 𝑘3)2) (38) 

 

RESULTS AND DISCUSSION 

This section presents the numerical results obtained from 

solving the standard and modified radioactive decay rate 

equations using the fourth-order Runge–Kutta (RK4) 

method. The results are reported strictly in terms of 

numerical outcomes, parameter values, observed trends, 

and explicit references to figures. Interpretations, 

physical explanations, comparisons with previous 

studies, and broader implications of the findings are 

intentionally excluded from this section and are 

addressed in the above section. 
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Numerical Solution of the Standard Radioactive 

Decay Model 

The standard radioactive decay equation, 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁,     

Was solved numerically using the RK4 method for an 

initial number of nuclei𝑁0 = 200, decay constant𝜆 =
0.1, and initial time𝑡0 = 0. The numerical solution shows 

a continuous decrease in the number of radioactive nuclei 

with time over the simulated interval. Figure 1 presents 

the numerical solution corresponding to the standard 

radioactive decay model for𝛽 = 0. Figure 1 should be 

placed immediately after its first citation here. 

 

Numerical Results for the Modified Decay Equation 

with a Negative Quadratic Term 

The modified radioactive decay equation with a negative 

quadratic term, 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 − 𝛽𝑁2,    

Was solved numerically for𝑁0 = 200,𝜆 = 0.1, and 

varying values of the quadratic parameter 𝛽. Numerical 

simulations were performed for𝛽 = 0.0001,0.0002 

and0.0003. Figures 2–4 show the numerical solutions 

obtained for these parameter values. In all cases, the 

numerical solutions indicate a decreasing trend in the 

number of radioactive nuclei with time. As the value of 

𝛽increases, the numerical curves display a steeper 

decline at earlier times. 

Figure 2: 𝛽 = 0.0001 

Figure 3: 𝛽 = 0.0002 

Figure 4: 𝛽 = 0.0003 

Figures 2–4 should be placed immediately after their first 

citation in this subsection. 

 

Numerical Results for the Modified Decay Equation 

with a Positive Quadratic Term 

The modified radioactive decay equation with a positive 

quadratic term, 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 + 𝛽𝑁2,    

Was solved numerically using the RK4 method for𝑁0 =
200,𝜆 = 0.1 and increasing values of𝛽? Simulations 

were carried out for𝛽 = 0.0001,0.0004,0.00049, 

and0.0005. Figures 5–8 present the numerical solutions 

corresponding to these parameter values. The numerical 

results show a transition in the temporal behavior of the 

solutions as the value of 𝛽increases. For the highest value 

of𝛽, the numerical solution approaches a constant 

population level over time. 

Figure 5: 𝛽 = 0.0001 

Figure 6: 𝛽 = 0.0004 

Figure 7: 𝛽 = 0.00049 

Figure 8: 𝛽 = 0.0005 

Figures 5–8 should be placed immediately after their first 

citation in this subsection and before the beginning of 

Figure 5. 

 

 
Figure 1: Two Nuclide Decay Equations Solved with the 

RK4 Method, Where, N0 = 200, λ = 0.1, β =
0.000, t0 = 0  

 
Figure 2.  Two Nuclide Decay Equations Solved with 

the RK4 Method, where N0 = 200, λ = 0.1, β =
0.0001, t0 = 0  
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Figure 3: Two Nuclide Decay Equations Solved with the 

RK4 Method, Where N0 = 200, λ = 0.1, β =
0.0002, t0 = 0  

 

 
Figure 4: Two Nuclide Decay Equations Solved with the 

RK4 Method, Where N0 = 200, λ = 0.1, β =
0.0003, t0 = 0  

 

 
Figure 5: Two Nuclide Decay Equation Solved with the 

RK4 Method, Where N0 = 200, λ = 0.1, β =
0.0001, t0 = 0  

 

 
Figure 6: Two Nuclide Decay Equations Solved with the 

RK4 Method, Where N0 = 200, λ = 0.1, β =
0.0004, t0 = 0  

 

 
Figure 7: Two Nuclide Decay Equations Solved with the 

RK4 Method, Where N0 = 200, λ = 0.1, β =
0.00049, t0 = 0  

 

 
Figure 8: Two Nuclide Decay Equations Solved with the 

RK4 Method, Where N0 = 200,     λ = 0.1, β =
0.0005, t0 = 0  
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Discussion 

The graphs gotten (Figures 1-4) from the solution of this 

modified radioactive decay equation shows the results of 

a numerical simulation of radioactive decay using the 

Runge-Kutta method (RK45). The graphs show the 

relationship between the numbers of radioactive nuclei 

remaining as a function of time for two different decay 

scenarios: simple exponential decay and chain reaction 

decay. The black curve represents the numerical 

modified solution (RK45) number of radioactive nuclei 

remaining as a function of time for the case of simple 

exponential decay (
𝑑𝑁

𝑑𝑡
= −𝜆𝑁), where the decay rate is 

constant. The red and blue curve represents the number 

of radioactive nuclei remaining as a function of time for 

the case of chain reaction decay (
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 − 𝛽𝑁2), 

where the decay rate decreases by a production term that 

depends on the square of the number of radioactive 

nuclei. 

Simple exponential decay: In simple exponential decay, 

the rate of decay is proportional to the number of 

radioactive nuclei remaining. This means that the decay 

rate decreases as the number of nuclei decreases, leading 

to an exponential decline in the number of radioactive 

particles over time.  Black curve on the graph illustrates 

this behavior, showing a continuous decrease in the 

number of radioactive nuclei over time. Chain reaction 

decay introduces a new term, -βN2, which represents the 

production of new radioactive nuclei due to interactions 

between existing nuclei. This term introduces a 

nonlinearity into the differential equation, leading to 

more complex decay dynamics. The red and blue curve 

on the graph captures this interplay between decay and 

production. 

In the modified radioactive equation
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 + 𝛽𝑁2 , 

the graphs (Figures 5-7) gotten from this radioactive 

decay equation show the results of a numerical 

simulation of radioactive decay using the Runge-Kutta 

method. The graphs show the number of radioactive 

nuclei remaining as a function of time for chain reaction 

decay. The red and blue curve represents the number of 

radioactive nuclei remaining as a function of time for the 

case of chain reaction decay (
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 + 𝛽𝑁2), where 

the decay rate is balanced by a production term that 

depends on the square of the number of radioactive 

nuclei. 

For a steady state population growth, in the case of chain 

reaction decay (Figure 8), the red and blue curve plateaus 

at a steady state value, indicating that the production rate 

of new radioactive nuclei balances out the decay rate. 

This steady state population is achieved when the beta 

value (β) is greater than the decay constant (λ). This is 

because the production term in the chain reaction decay 

model balances out the decay term, resulting in a steady-

state population of radioactive nuclei. The specific beta 

value that produces this steady-state population growth 

was determined by setting the production rate equal to the 

decay rate and solving for β. 

The advantage of using this Runge-Kutta Fourth Order 

method is that it offers more realistic and simpler 

solutions and is very easy to computational systems. This 

condition is similar to what has been mentioned by 

Balbina et al. (2025), compared using adaptive step sizes 

or Runge-Kutta-Fehlberg (RKF) Methods that use fewer 

function evaluations. Meanwhile, the weakness of using 

this method is its high computational cost per step, 

insufficiency with stiff equations, and the difficulty in 

implementing adaptive step size control in its basic form. 

This condition is caused by the decay that occurs in the 

radionuclide series in the heavy radioactive element 

series, which requires a very long process to achieve 

stability. 

 

CONCLUSION  

In this research work, two methods for solving a modified 

radioactive decay equation were carried out: the Standard 

Radioactive Decay Model, represented by the equation 
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 assumes the decay rate is proportional to the 

remaining radioactive nuclei (N), leading to an 

exponential decline in their number over time. Modified 

Radioactive Decay Model represented by the equation   
𝑑𝑁

𝑑𝑡
= −𝜆𝑁 ± 𝛽𝑁2, introduces a new term (𝛽𝑁2). This 

term represents the production of new radioactive nuclei 

due to interactions between existing ones, adding a 

nonlinear element to the decay dynamics. However, both 

models provide valuable insights into radioactive decay, 

but the modified model offers a more realistic 

representation in situations with significant new nuclei 

production. It demonstrates the crucial role of the β value 

in regulating the steady-state population, highlighting its 

importance in applications like nuclear power generation 

and waste management. Based on the literature regarding 

the numerical solution of radioactive decay equations 

using the Runge-Kutta fourth-order (RK4) method, the 

key novel findings and limitations revolve around 

improved accuracy over traditional methods, 

computational efficiency, and specific constraints in 

handling complex physical models. Based on the 

application of the Runge-Kutta Fourth Order (RK4) 

method to modified radioactive decay equations, further 

studies can focus on increasing computational efficiency, 

improving accuracy, and modeling more complex 

physical systems.  
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