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Numerical Solution of the Modified Radioactive Decay Rate Equation Using the
Runge-Kutta Fourth Order Method
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ABSTRACT

The standard radioactive decay equation describes exponential decay but neglects
possible production mechanisms that may arise in complex systems. This study
investigates a modified radioactive decay rate equation that incorporates a
quadratic production term, allowing for the modeling of coupled decay—
production dynamics. The governing nonlinear ordinary differential equation was
solved analytically for limiting cases and numerically using the fourth-order
Runge—Kutta (RK4) method. Numerical simulations were performed for varying
values of the production parameter 3, while keeping the decay constant fixed,
allowing for a direct comparison between standard decay and modified decay
behaviors. The results show close agreement between analytical and numerical
solutions at low P values, confirming the accuracy of the RK4 method. As B
increases, deviations from simple exponential decay become significant, with the
emergence of steady-state solutions where production balances decay. These
steady states occur when the production term becomes comparable to the linear
decay term. The study demonstrates that the modified model captures decay
dynamics not represented by the standard equation and highlights the sensitivity
of system behaviors to the quadratic production parameter. The findings confirm
the suitability of the RK4 method for solving nonlinear radioactive decay models
and provide a framework for extending the analysis to more complex decay
systems involving spatial dependence or coupled nuclide chains.
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INTRODUCTION particles, or gamma rays) to achieve a more stable state.
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Radioactivity is a fundamental nuclear process through
which unstable atomic nuclei transform into more stable
configurations. This transformation occurs through
several decay mechanisms, including alpha decay, beta
decay, gamma emission, and spontaneous fission, often
accompanied by the release of high-energy particles or
photons. Radioactive decay plays a critical role in nuclear
physics, astrophysics, medical physics, radiometric
dating, and reactor technology, where accurate modeling
of decay processes is essential for both theoretical
understanding and practical applications (Mumpower et
al., 2016).

The Standard radioactive decay is the spontaneous,
random process by which unstable atomic nuclei lose
energy by emitting radiation (alpha particles, beta

This process is characterized by first-order kinetics,
meaning the rate of decay is proportional to the number
of atoms present, resulting in a constant half-life for any
given isotope (Mumpower et al., 2016). While generally
reliable, radioactive decay has several limitations in
theory and application: randomness at atomic level, time-
range limitations (Dating), environmental assumptions
(Carbon-14), environmental interference, measurement
limits and system closure (Dating). The motivation for

introducing nonlinear modifications to the standard,
. S . dN
linear radioactive decay rate equation (E = —AN) )

stems from the need to model complex physical
phenomena that deviate from simple exponential decay,
such as high-intensity, non-stationary conditions, or
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coupling between multiple decay processes. The Fourth
Order Runge-Kutta (RK4) method is utilized to solve
these modified equations due to its high accuracy,
stability, and capability to handle non-linear ordinary
differential equations (ODEs) where analytical solutions
are unavailable.

The behavior of radioactive nuclides is commonly
characterized using the decay constant A or the half-
lifeT; ;,, which provides a measure of nuclear instability.

The half-life is defined as the time required for half of the
radioactive nuclei in a sample to decay and is related to

the decay constant by
In2

T1/2 = (1

The classical radioactive decay law assumes that the rate
of decay is directly proportional to the number of
undecayed nuclei present at any given time. This
assumption leads to the first-order linear ordinary

differential equation

dN
o, @)

Where N (t)represents the number of radioactive nuclei
at timet. The analytical solution of Equation (2) yields
the well-known exponential decay law

N(t) = Nye ™, 3)

Where N, is the initial number of nuclei? This model has
been successfully applied across a wide range of
problems due to its simplicity and exact solvability.
Despite its broad applicability, the standard radioactive
decay equation neglects additional physical processes
that may influence decay dynamics in realistic systems.
In many nuclear and physical environments, decay may
be accompanied by production mechanisms, nonlinear
interactions, decay chains, or feedback processes that
cannot be adequately represented by a purely linear decay
law. Such effects are particularly relevant in complex
decay systems, nuclear fuel cycles, population dynamics
analogies, and nonlinear physical processes, where
deviations from simple exponential behavior may occur.
To overcome these limitations, modified radioactive
decay models have been introduced by extending the
standard decay equation to include nonlinear terms. One
such extension is the modified radioactive decay rate
equation given by

8= —AN £ N2, (4)

Where fis a parameter that quantifies the strength of the
quadratic contribution? The linear term —AN represents
the conventional radioactive decay process, while the
quadratic term +£N? introduces a nonlinear dependence
on the number of nuclei. The positive sign corresponds to
a production or interaction mechanism that may
counteract decay, whereas the negative sign enhances the
depletion rate. This formulation allows the model to
describe more complex decay—production dynamics,
including chain reactions, nonlinear feedback effects, and
equilibrium or steady-state solutions, which are not
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captured by the standard exponential decay model
(Cabral and Barros, 2015; Martin and Shaw, 2019).
Analytical solutions of nonlinear differential equations
such as Equation (4) are often challenging and may only
be obtainable under restrictive assumptions or for special
cases. Although closed-form solutions can be derived for
some parameter regimes using partial fraction
decomposition, the general behavior of the system—
particularly for varying parameter values—requires
numerical  investigation.  Consequently, reliable
numerical methods are essential for exploring the full
dynamics of the modified radioactive decay equation.
Among the available numerical techniques for solving
ordinary differential equations, the fourth-order Runge—
Kutta (RK4) method is widely regarded as one of the
most effective single-step methods due to its high
accuracy, numerical stability, and computational
efficiency. The RK4 method does not require higher-
order derivatives, is self-starting, and provides fourth-
order accuracy with relatively moderate computational
cost. These properties make it particularly suitable for
solving nonlinear decay equations where analytical
solutions are either unavailable or insufficient for
capturing detailed system behavior.

The application of Runge—Kutta methods to radioactive
decay and related physical systems has been well
documented in the literature. Ahmed (2001) successfully
employed a fourth-order Runge—Kutta algorithm to
model fission product accumulation and radioactive
decay chains, demonstrating good agreement with
established reactor physics codes. Similarly, numerical
studies of radioactive decay, population growth models,
and nonlinear dynamical systems using higher-order
Runge—Kutta schemes have shown excellent accuracy
when compared with analytical solutions and improved
performance over simpler methods such as Euler’s
scheme (Anita et al., 2021; Sara et al., 2022; Aroloye and
Owa, 2024).

Beyond nuclear physics, equations of the form given in
Equation (4) arise in a variety of scientific disciplines. In
population dynamics, similar nonlinear terms describe
interaction-driven growth or depletion processes. In
chemical kinetics, quadratic terms may represent
bimolecular reactions, while in applied mathematics and
nonlinear wave propagation, such equations model
feedback mechanisms and energy transfer processes
(Otor et al.,, 2017; Otor et al., 2018). These cross-
disciplinary applications further highlight the importance
of understanding the qualitative and quantitative
behavior of modified decay equations.

Motivated by the need to accurately model complex
radioactive decay processes, this study presents an
analytical and numerical investigation of the modified
radioactive decay rate equation using the fourth-order
Runge—Kutta method. The study aims to examine the
influence of the decay constant Aand the quadratic
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parameter fSon the temporal evolution of radioactive
nuclei, to compare numerical solutions with analytical
results where applicable, and to identify conditions under
which steady-state or equilibrium behavior emerges. By
doing so, the work seeks to deepen understanding of
nonlinear decay dynamics and to demonstrate the
effectiveness of the RK4 method as a robust numerical
tool for solving modified radioactive decay models
relevant to nuclear physics and related scientific fields.

Theoretical Framework

Radioactive decay is a fundamental nuclear process in
which unstable atomic nuclei transform into more stable
configurations through the emission of particles or
radiation. When large ensembles of nuclei are
considered, the decay process can be described
deterministically using ordinary differential equations,
forming the theoretical basis for analytical and numerical
modeling of radioactive systems.

Standard Radioactive Decay Model

The standard radioactive decay law assumes that the
probability of decay per unit time is constant and
proportional to the number of undecayed nuclei. This

leads to the first-order linear differential equation

dN

Where N(t)is the number of radioactive nuclei at time
tand Ais the decay constant. Solving Equation (5) with
the initial condition N(0) = N, yields the analytical
solution

N(t) = Nye . (6)
The decay constant is related to the half-life Ty, of the
nuclide by
In2
A= T @)

Equations (5) and (6) describe exponential decay and
form the foundation of classical radioactive decay theory.

Modified Radioactive Decay Rate Equation

While the standard decay model is applicable to isolated
systems, it does not account for additional mechanisms
such as production processes, interaction effects, or
nonlinear feedback. To address these limitations, the
radioactive decay equation is extended to include a
quadratic term, leading to the modified radioactive decay

rate equation
&%= —AN £ N2, (8)
Here, f is a parameter that characterizes the strength of

the nonlinear contribution. The linear term represents
conventional radioactive decay, while the quadratic term
introduces nonlinear decay—production dynamics. The

negative sign corresponds to enhanced depletion,

aNn _ _ 2
o AN — BN~, 9)
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Whereas the positive sign represents a competing

production mechanism,

N — _AN + BNZ.

(10)
dt
The inclusion of the quadratic term transforms the
governing equation into a nonlinear ordinary differential
equation, allowing the model to represent complex decay

behavior not captured by the standard exponential law.

Steady-State Condition

For the modified decay equation with a positive quadratic
term, equilibrium solutions arise when the rate of decay
balances the rate of production. Setting.

dN _
W, (1)
In Equation (10) gives
—AN + BN? =0, (12)
Which yields the steady-state population

A
Ny, = 5 (13)

This expression provides the theoretical basis for the
steady-state behavior observed in the numerical
simulations.

Relevance to Numerical Methods
The nonlinear nature of the modified radioactive decay
equations generally precludes simple closed-form
solutions for arbitrary parameter values. Consequently,
numerical methods are required to investigate the time
evolution of the system. The theoretical formulation
presented in this section directly motivates the
application of the fourth-order Runge—Kutta (RK4)
method described in the Methods section, ensuring
consistency between the governing equations and the
numerical solution procedure.
Each radioactive substance has a characteristic decay
period or half-life. A half-life is the interval of time
required for one-half of the atomic nuclei of a radioactive
sample to decay (Yesiloglu, 2019). The radioactive
isotope cobalt 60, which is used in radiation cancer
therapy, has, for example, a half-life of 5.26 years. Thus,
after that interval, a sample originally containing 16
grams of cobalt 60 would contain only 8 grams of cobalt
60 and would emit only half as much radiation. After
another interval of 5.26 years, the sample would contain
only 4 grams of cobalt 60. Half-lives can range from
thousands of years to milliseconds.
Again, it is a common practice to use the half-life (T1,)
instead of the decay constant (1) to indicate the degree of
instability or the decay rate of a radioactive nuclide. This
is defined as the period of time in which half of the
radioactivity has disappeared (half of the nuclei have
disintegrated) (Li et al., 2015).
-1 1

T2 =(3) n(3)

m2 _ 0,693

From which: A = — =
Ti/2

(14)

T1/2
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The mean life of a nuclide is the sum of the lifetimes of a
certain number of nuclei (before they have all
disintegrated) divided by the number of nuclei. During
the time interval dt, some dN nuclei disintegrate. These
"lived" during a period t, which amounts to a total
lifetime for dN nuclei (Rozanski et al., 2001) of

N = Nye ™t

t.dN =t.AN.dt (15)
Integrating over all nuclei (N) gives the mean life (time):

r= L PNt =2 [ te M dt = A{-te [ +

2 e Mdt =2{0+1(—3e7M|F)} =1 (16)

As an example, the mean life of a '*C nucleus with T =
5730 ais 8267 years. Then A = 1/8267, which means that
a sample activity decreases by 1%o in about 8 years; a °H
sample activity (T2 = 12.43 a) decreases by 5.6% per
year.

The modified Inverse Square Model was simulated using
the fourth order Runge-Kutta method implemented
through the RK4 solver of the Mat lab (Igba and Otor,
2018), and the interaction between lower and upper
atmosphere, employing daily data of Total Ozone
Column (TOC) decay and atmospheric parameter (cloud
cover) over Nigeria from 1998-2012 was investigated by
Audu et al., 2023 using a decay parameter to evaluate the
fluctuation of climate change implemented using RK4.
Results reveal that TOC increased spatially from the
coastal region to the northeastern region of the country.
Pure semiconductors usually possess a single optical
absorption within the interband region; the Tauc plot has
been a commonly used technique in the estimation of
their energy bandgaps (Perverga et al., 2022) following
the decay model system particularly RK4 to simulate the
movement of electron and holes when they are not in a
simple steady state.

To solve this equation numerically, one can use various
numerical methods such as Euler's scheme, the Runge-
Kutta method, the predictor-corrector scheme, or other
advanced numerical techniques like the finite difference
method or finite element method. These methods involve
discretizing time into small intervals and approximating

.. dN . . o
the derlvatlve,a using difference approximations, by

iteratively updating the quantity N at each time step, one
can obtain a numerical solution that approximates the
behavior of the modified radioactive decay equation. The
specific choice of numerical method will depend on the
desired accuracy, computational resources available, and
the nature of the problem you are trying to solve.

The equation is likely to be of interest in various
scientific and mathematical contexts, such as Radioactive
Decay. The equation is a modification of the standard
radioactive decay equation, which models the decay of
radioactive isotopes (Martin and Shaw, 2019). By
introducing the quadratic decay component, it might
apply to scenarios involving complex decay processes
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such as; The population (Dynamics) modeling to
describe scenarios where the growth or decline of a
population is influenced by both exponential and
quadratic factors, in some chemical reactions, the
concentration of a species might decay following a
similar pattern, and this equation could be relevant in
those situations, in applied Mathematics, the equation
falls under the domain of ordinary differential equations,
and its solutions can be studied and analyzed using
various mathematical techniques.

An  educational strategy targeting biomedical
engineering/physics students focusing on the calculation
of isotope concentrations and activities in radioactive
decay chains, which is capable of demonstrating the
behavior of these isotopes over time, by using an iterative
process and basic mathematical operations, was carried
out by Ref. (Balbina et al., 2025). The computational
modeling of the radioactive decay problem by solving
ordinary differential equation systems using the Runge-
Kutta fourth-order numerical method was treated.

The specific objectives of the study could include:
Analyzing the behavior of the modified radioactive decay
equation and understanding the impact of the
parameters « and  on the decay process, adapting or
developing numerical algorithms to solve the modified
radioactive decay equation accurately and efficiently,
implementing  the numerical methods  using
programming language or software tool, analyzing and
interpreting the results obtained from the numerical
solutions, including the decay behavior of the radioactive
material under different parameter values and comparing
the numerical results with known analytical solution or
other reference methods to assess the accuracy of the
numerical techniques employed.

The significance of the equation lies in its ability to
model more complex decay processes compared to the
simple exponential decay equation. Depending on the
values of parameters A and f and the initial conditions,
the solutions of this equation might exhibit diverse
behaviors, such as stable equilibrium, oscillations, or
asymptotic decay, providing valuable insights into the
dynamics of the system it represents. The study of this
equation can lead to a deeper understanding of natural
processes and phenomena in various scientific
disciplines. Therefore, we shall analyze the physical or
mathematical meaning of the equation and choose
appropriate values for A and § accordingly.

MATERIALS AND METHODS

The modified radioactive decay equation is a
fundamental concept in nuclear physics and radiometric
dating. It describes the behavior of unstable atomic nuclei
as they undergo radioactive decay, which involves the
spontaneous transformation of one element into another
while emitting radiation. This equation incorporates
various factors that influence the rate of decay and is
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crucial for understanding the age of rocks, minerals, and

archaeological artifacts. It can be expressed as:

dN _ 2
N = AN+ N

This equation (where + SN2 is the modified value)
reflects the probabilistic nature of radioactive decay, with
the decay constant determining the likelihood of an
individual nucleus decaying in a given unit of time. The
higher the decay constant, the faster the nuclei decay,
resulting in a shorter half-life. Understanding this
equation is essential for various scientific and practical
applications, including dating ancient materials, tracking
the behavior of isotopes in environmental studies, and
ensuring the safety of nuclear reactors and waste storage.
It also serves as a reminder of the remarkable and
complex nature of the subatomic world, where seemingly
unpredictable events can be described and understood
through mathematical models. The analytical solution of
the standard radioactive decay equation is obtained as

follows:
dN

— = —AN

at
—=-21fdt

logeN =-At+C

If the initial number of nuclei is N,

And N = N, whent = 0, then (8) becomes
log,Ny =C

log,N = —At + log.N,

log,N — log,N, = —At

N
log, (N_o) = -t
N _ oAt
No
N = Nye ™ (20)
Also, the analytical solution of the modified radioactive

decay equation is obtained as follows:
dN

(17)

(18)

(19)

aN _ _ 2
pm AN + BN
Case I:
i —AN 4+ BN 21
dN
—AN+BN2 dt
dN
IW = fdt =t+ C1
dN
f(—/lN+BN2) =t+G

Integrating the left-hand side using partial fractions
1 A B
N(-2+BN) N ' (-=2-BN)
Where, A = _71and = % ,at N = Ny when t = 0 gives
2

N(t) =N, = Ty (22)
Which result to

1 2
C,=:n(p - N—O) 23)
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Case II:

&%= —AN - pN? (24)
v = &

f(_llfivmz) =[dt+C,

| G = t+ G

Using partial fractions to integrate the left-hand side

1 A B
N(-A-BN) _ N ' (=A—-BN) (25)

Where, A = _71 and B = ;—ﬁ when N = N, when t = 0,
then

A

N(®) = No = =5, Z (26)
By rearranging (16)
C, _—In( +,8) 27)

The numerlcal solution of the modified radioactive decay

equation is obtained as follows:
&%= —AN £ BN?

Using the Runge-Kutta fourth-order method

Yns1 = Yo +=lky + 2Ky + 2ks +kg]  (28)

Where,

ki = hf (xn, yn) (29
k

ky = (2 + ,yn ) (30)

ks = (X + 5,00 +2) (31)

ky = (xn E:yn + k3) (32)

Applying the fourth-order Runge-Kutta method to solve

the modified radioactive decay equation.
dN

— = —AN £ BN?
S8 = F(t,No) = —ANo £ BN, (33)

Initializing values; N(q) = the initial value of nuclei

Nn+1 = NO +6l[k1 + 2k2 + 2k3 + k4] (34)
ky = h.(=ANy + BNZ) (35)
k, = h. (—,1( ) +p 1v0 ) (36)
2
k3=h( —a(No +52) £ 5 (N, + ) (37)
ky = h.(=A(No £ k3) £ B(Ny k3) ) (38)

RESULTS AND DISCUSSION

This section presents the numerical results obtained from
solving the standard and modified radioactive decay rate
equations using the fourth-order Runge—Kutta (RK4)
method. The results are reported strictly in terms of
numerical outcomes, parameter values, observed trends,
and explicit references to figures. Interpretations,
physical explanations, comparisons with previous
studies, and broader implications of the findings are
intentionally excluded from this section and are
addressed in the above section.
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Numerical Solution of the Standard Radioactive
Decay Model

The standard radioactive decay equation,
dN

& — N,
dt

Was solved numerically using the RK4 method for an
initial number of nucleiNy, = 200, decay constantd =
0.1, and initial timet, = 0. The numerical solution shows
a continuous decrease in the number of radioactive nuclei
with time over the simulated interval. Figure 1 presents
the numerical solution corresponding to the standard
radioactive decay model forf = 0. Figure 1 should be
placed immediately after its first citation here.

Numerical Results for the Modified Decay Equation
with a Negative Quadratic Term
The modified radioactive decay equation with a negative

quadratic term,
dn

E = —AN - ﬁ N 2 )

Was solved numerically forN, = 200,4 = 0.1, and
varying values of the quadratic parameter . Numerical
simulations were performed forf = 0.0001,0.0002
and0.0003. Figures 2—4 show the numerical solutions
obtained for these parameter values. In all cases, the
numerical solutions indicate a decreasing trend in the
number of radioactive nuclei with time. As the value of
Bincreases, the numerical curves display a steeper
decline at earlier times.

200

T T T
—=—Numerical solution of the modified radioactive decay equation (RK45)
——Analytical solution of the modified radioactive decay equation
——Analytical solution of the standard radioactive decay solution

Number of atoms N(t)
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Figure 2: § = 0.0001

Figure 3: § = 0.0002

Figure 4: § = 0.0003

Figures 2—4 should be placed immediately after their first
citation in this subsection.

Numerical Results for the Modified Decay Equation
with a Positive Quadratic Term
The modified radioactive decay equation with a positive

quadratic term,
dN

— = —AN +BN?,

Was solved numerically using the RK4 method forN, =
200,4 = 0.1 and increasing values offf? Simulations
were carried out forf = 0.0001,0.0004,0.00049,
and0.0005. Figures 5—8 present the numerical solutions
corresponding to these parameter values. The numerical
results show a transition in the temporal behavior of the
solutions as the value of fincreases. For the highest value
off3, the numerical solution approaches a constant
population level over time.

Figure 5: § = 0.0001

Figure 6: § = 0.0004

Figure 7: § = 0.00049

Figure 8: § = 0.0005

Figures 5-8 should be placed immediately after their first
citation in this subsection and before the beginning of
Figure 5.

200 T T T l
—=—Numerical solution of the modified radioactive decay equation (RK45)

——Analytical solution of the modified radioactive decay equation
—Analytical solution of the standard radioactive decay solution

=
S

Number of atoms N(t)

0 1 1 1 1
0 5 10 15 20 25 30 35 40

Time t (s)
Figure 1: Two Nuclide Decay Equations Solved with the

0 L Il Il Il T
0 5 10 15 20 25 30 35 40 45 50

Time t (s)
Figure 2. Two Nuclide Decay Equations Solved with

RK4 Method, Where, N, =200, A=0.1, B= the RK4 Method, where N, =200, A=0.1, =
0.000,t, =0 0.0001,t, =0
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200 T T T T T
——Numerical solution of the modified radioactive decay equation (RK45)
——Analytical solution of the modified radioactive decay equation
—Analytical solution of the standard radioactive decay solution

200
1 200 T T

T T T
—=—Numerical solution of the modified radioactive decay equation (RK45)
——Analytical solution of the modified radioactive decay equation

——Analytical solution of the standard radioactive decay solution
B 150 - e 150
z z
0 [’}
£ £
: :
« 100 « 100 - |
[} o
. =
[ )
el el
E £
E} 3
Z 50- S Z s 1
o L | | | | 0 L | 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Time t (s) Time t (s)
Figure 3: Two Nuclide Decay Equations Solved with the Figure 4: Two Nuclide Decay Equations Solved with the
RK4 Method, Where N, =200, A=0.1, B= RK4 Method, Where N;=200, A=0.10=

0.0002,t, = 0 0.0003,t, = 0
200 T T T T ] 200 T T T I 1
—=—Numerical solution of the modified radioactive decay equation (RK45) | —=— Numerical solution of the modified radioactive decay equation (RK45)
—— Analytical solution of the modified radioactive decay equation 180} —— Analytical solution of the modified radioactive decay equation
160 -
2150 r -
z o140
@ z
£ L
° g 120
- 2
= 100 g 100
@ H
H] g w0
£ :
60 -
Z 5L 1
40 -
20
ok I I I I I
0 L Il
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 2% 30 35 40 45 50
Time t (s)

Time t (s)

Figure 5: Two Nuclide Decay Equation Solved with the Figure 6: Two Nuclide Decay Equations Solved with the
RK4  Method, Where N, = 200, A = 0.1, B= RK4 Method, Where N,=200,A=0.1, =

0.0001,t, = 0 0.0004,t, = 0
200¢ 2017 T T T T
——Numerical solution of the modified radioactive decay equation (RK45)
——Analytical solution of the modified radioactive decay equation

£ 22005~ i

s =

2 150 - 1 i
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o 5 0

% 5 200

o s
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2 5

——Numerical solution of the modified radioactive deca: ti 21995~ )
y equation (RK45)
——Analytical solution of the modified radioactive decay equation
50 L | | | | | | | 199 | | | | | |
¢ s s B N % M % 0 5 0 15 2 2% N % 4 45 5
Time t (s) Time t(s)
Figure 7: Two Nuclide Decay Equations Solved with the  pjo e 8: Two Nuclide Decay Equations Solved with the
RK4 = Method,  Where = No =200,A=01, B= Rg4 Method, Where N, =200, A=0.1, B=
000049, tg b O O.OOOS,tO — 0
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Discussion

The graphs gotten (Figures 1-4) from the solution of this
modified radioactive decay equation shows the results of
a numerical simulation of radioactive decay using the
Runge-Kutta method (RK45). The graphs show the
relationship between the numbers of radioactive nuclei
remaining as a function of time for two different decay
scenarios: simple exponential decay and chain reaction
decay. The black curve represents the numerical
modified solution (RK45) number of radioactive nuclei
remaining as a function of time for the case of simple

exponential decay (‘Z—I: = —AN), where the decay rate is

constant. The red and blue curve represents the number
of radioactive nuclei remaining as a function of time for

the case of chain reaction decay (i—IZ = —AN — BN?),

where the decay rate decreases by a production term that
depends on the square of the number of radioactive
nuclei.

Simple exponential decay: In simple exponential decay,
the rate of decay is proportional to the number of
radioactive nuclei remaining. This means that the decay
rate decreases as the number of nuclei decreases, leading
to an exponential decline in the number of radioactive
particles over time. Black curve on the graph illustrates
this behavior, showing a continuous decrease in the
number of radioactive nuclei over time. Chain reaction
decay introduces a new term, -BN?, which represents the
production of new radioactive nuclei due to interactions
between existing nuclei. This term introduces a
nonlinearity into the differential equation, leading to
more complex decay dynamics. The red and blue curve
on the graph captures this interplay between decay and
production.

In the modified radioactive equation% = —AN + fN?,

the graphs (Figures 5-7) gotten from this radioactive
decay equation show the results of a numerical
simulation of radioactive decay using the Runge-Kutta
method. The graphs show the number of radioactive
nuclei remaining as a function of time for chain reaction
decay. The red and blue curve represents the number of
radioactive nuclei remaining as a function of time for the

case of chain reaction decay (% = —AN + N?), where

the decay rate is balanced by a production term that
depends on the square of the number of radioactive
nuclei.

For a steady state population growth, in the case of chain
reaction decay (Figure 8), the red and blue curve plateaus
at a steady state value, indicating that the production rate
of new radioactive nuclei balances out the decay rate.
This steady state population is achieved when the beta
value (B) is greater than the decay constant (A). This is
because the production term in the chain reaction decay
model balances out the decay term, resulting in a steady-
state population of radioactive nuclei. The specific beta
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value that produces this steady-state population growth
was determined by setting the production rate equal to the
decay rate and solving for .

The advantage of using this Runge-Kutta Fourth Order
method is that it offers more realistic and simpler
solutions and is very easy to computational systems. This
condition is similar to what has been mentioned by
Balbina et al. (2025), compared using adaptive step sizes
or Runge-Kutta-Fehlberg (RKF) Methods that use fewer
function evaluations. Meanwhile, the weakness of using
this method is its high computational cost per step,
insufficiency with stiff equations, and the difficulty in
implementing adaptive step size control in its basic form.
This condition is caused by the decay that occurs in the
radionuclide series in the heavy radioactive element
series, which requires a very long process to achieve
stability.

CONCLUSION
In this research work, two methods for solving a modified
radioactive decay equation were carried out: the Standard

Radioactive Decay Model, represented by the equation

d . .
2N — _AN assumes the decay rate is proportional to the

dt
remaining radioactive nuclei (N), leading to an
exponential decline in their number over time. Modified

Radioactive Decay Model represented by the equation

i—IZ = —AN 4+ SN2, introduces a new term (SN?). This

term represents the production of new radioactive nuclei
due to interactions between existing ones, adding a
nonlinear element to the decay dynamics. However, both
models provide valuable insights into radioactive decay,
but the modified model offers a more realistic
representation in situations with significant new nuclei
production. It demonstrates the crucial role of the  value
in regulating the steady-state population, highlighting its
importance in applications like nuclear power generation
and waste management. Based on the literature regarding
the numerical solution of radioactive decay equations
using the Runge-Kutta fourth-order (RK4) method, the
key novel findings and limitations revolve around
improved accuracy over traditional methods,
computational efficiency, and specific constraints in
handling complex physical models. Based on the
application of the Runge-Kutta Fourth Order (RK4)
method to modified radioactive decay equations, further
studies can focus on increasing computational efficiency,
improving accuracy, and modeling more complex
physical systems.
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