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ABSTRACT 

Wind nullity, low wind, and bi- or multi-modality are common characteristics at 

high temporal resolution, especially in Equatorial regions. The traditional two-

parameter Weibull (Weibull) distribution function (DF) is not designed to capture 

such peculiarities. Hourly mean wind speed data for eight locations that cut across 

different climate zones in an Equatorial region of West Africa have been analyzed 

using Weibull and Maximum Entropy Principle-based (MEP) distribution 

functions (DFs). Wind characteristics, such as power density, null wind speed, and 

modal distributions, together with turbine efficiency, capacity, and availability 

factors, were also assessed at a wind turbine hub height of 73 m using standard 

statistical tools. The results indicated that null wind speed and/or bimodality were 

present in the wind distributions at Abuja, Akure, Akungba, Nsukka, Makurdi, 

and Yola. The results of the assessments of the two DFs show that the MEP DF 

generated much better results across all time scales (R2: 0.83 - 0.98; RMSE: 

0.0037 - 0.0109 m/s2) than the Weibull DF (R2: 0.47 - 0.98; RMSE: 0.0038 - 

0.0191 m/s2), especially for locations where null wind speed and bimodality were 

prominent in the wind data distribution. MEP DF results further indicated that 

annual and rainy season periods were better modeled than the dry season in all the 

locations. The overall effect of all the turbine characteristics on annual and 

seasonal scales is that sufficient winds were available (Availability factor: 0.733 - 

0.97; Capacity factor: 0.350 - 0.778) at the rated power for energy production in 

all the climate zones. 

 

INTRODUCTION 

Availability of stable and secure energy is the backbone 

of industrialization, which has played a key role in 

stimulating economic growth and employment 

generations in several countries (Csereklyei et al., 2014; 

Alrashidi et al., 2020). However, the main chunk of this 

energy is from thermal sources such as petroleum, coal, 

and natural gas, which are not only finite but also pose 

serious environmental concerns associated with global 

warming and climate change. The Cost-effectiveness of 

clean, greener renewable energy sources and 

commitment to reverse the adverse effects of climate 

change have led several countries to make significant 

investments to increase the penetration of hydropower, 

solar, and wind energy into their electrical power system. 

For instance, hydropower is the world's most widely used 

renewable energy resource, contributing about 16.6% of 

electricity generation worldwide, and this is expected to 

increase approximately by 3.1% each year for the next 25 

years (Donoghue, 2012). This renewable energy source, 

therefore, plays an important role in enabling countries 

and communities around the world to meet their power 

and water needs. As of 2019, in Europe, 10% of the 

energy mix is also from wind energy alone, and this is 

expected to increase significantly towards 2030 (Europe, 

2017). Several developing countries are also making 

frantic efforts to grow their economy by investing in 

energy production, transmission, and distribution. A 

choice has to be made between the cost-effectiveness of 

energy resources and emerging and ever-growing 

environmental issues. Most of the electrical energy 

production in the equatorial regions of West Africa is 

from non-renewable sources. One clear effort to reverse 

this trend, for instance, is the huge investment in 

hydropower plants at locations such as Kanji, Jebba, 

Shiroro, and some other smaller schemes, all situated in 

Nigeria, an equatorial region of West Africa. This 

renewable source adds about one-fifth of the total energy 
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mix in Nigeria (Olaniyi et al., 2025). Notwithstanding the 

significant contribution from this source, there is still a 

wide gap between energy demand and supply in Nigeria. 

In addition to this, Hydropower sources are susceptible 

to climate variations, seasonal changes, drought, 

flooding, etc. In a study carried out by Ladokun et al., 

(2018) using 27 years of data on turbine discharges, it 

was shown that the lowest averaged values of the hydro-

turbine discharges were obtained during the rainy season 

in July for Kanji and Jebba, and May for Shiroro. The 

observed fluctuation patterns in turbine discharges were 

linked to the inflow patterns, which are also connected to 

seasonal variation in rainfall and other climatic factors at 

the hydropower stations (Ladokun et al., 2018; 

Adegbehin et al., 2016). Besides, Nigeria, being a vast 

country, has many zones that are far away from the 

hydropower stations, and the cost of transmission could 

be daunting. One of the viable ways to increase the 

amount of energy generated and to ameliorate the 

observed power fluctuations associated with hydropower 

sources is to explore the complementary advantages of 

other renewable sources, such as wind and solar (Ajayi et 

al., 2013; Okeniyi et al., 2015; Oyedepo et al., 2012; T.A. 

Otunla & A.K. Umoren, 2022; Otunla & Kolebaje, 2015; 

Otunla, 2019). Wind sources, if properly exploited, could 

have some obvious advantages over hydropower, for 

instance, they could be less susceptible to seasonal 

variations. It can also be used to power rural communities 

that are far away from the national grid. Incidentally, 

above 50% of Nigerians live in rural communities (Ajayi 

et al., 2013; Okeniyi et al., 2015).  Celik, (2003) states 

that electrical energy from medium-scale wind turbines 

is preferable in remote locations because it is socially 

valuable and economically competitive.   

Wind turbines, when sited properly and used at optimal 

working conditions, could be a reliable energy source and 

produce socio-economically valuable energy. However, 

the utilization of wind resources is not without some 

inherent problems, among which are: the wind intensity 

of the site for the wind turbine, the wind distribution of 

the region proposed for the siting of the turbine, and 

frictional drag due to topography and other physical 

structures. The problem of frictional drag is easily solved 

since the atmosphere becomes freer of the effect of 

surface structures with an increase in height, and the wind 

also intensifies.  

The parameter Weibull (Weibull) distribution function 

(DF) has been the probability distribution of choice when 

it comes to analyzing the frequency distribution of wind 

speed to extract its energy (Weibull, 1951; Okeniyi et al., 

2015; Dorvlo, 2002; Li & Li, 2004; Akpinar & Akpinar, 

2004; Kavak Akpinar & Akpinar, 2005), reportedly due 

to the ease of its estimation and also for being a positively 

skewed distribution that favors moderate wind speeds. 

However, regional, climatic, seasonal, and diurnal effects 

can be observed when the nature of wind speed is 

considered (Yürüşen & Melero, 2016). Weibull DF often 

fail to understand such nonlinear spatiotemporal 

variations (Okpala et al., 2026). For instance, Carta & 

Ramírez, (2007) applied Weibull DF in an analysis of 

hourly mean wind speed data recorded at the various 

weather stations located throughout the Canarian 

Archipelago islands, and it was found that the typical 

two-parameter Weibull DF does not accurately represent 

all the wind regimes observed in that region. Thus, 

Weibull DF is not suitable for some wind regimes 

encountered in nature, such as, for instance, those with 

high percentages of null wind speeds (Takle & Brown, 

1978; Chang, 2011), Bimodal distributions (Jaramillo & 

Borja, 2004), etc (Li & Li, 2004; Ramírez & Carta, 2005; 

Garcia et al., 1998; Li & Li, 2005a; Li & Li, 2005b). 

Weibull DF will, in fact, give a probability of zero for 

null wind speed. The magnitude of these types of wind 

regimes could increase significantly as the resolution of 

the data increases from monthly to hourly time scale. 

Oyedepo et al., (2012) indicated that using monthly data 

for analysis of wind resources has the limitation of losing 

extremely low and high wind speeds within the month, as 

well as diurnal variations in the wind. Thus, wind energy 

resources are best assessed using hourly time series data; 

however, with the consequences of deprecation in the 

accuracy of Weibull DF, especially in regions of the 

world where there is a significant amount of null wind 

speed or bimodality in the frequency distribution of the 

wind.  

All existing literature on the assessment of wind energy 

characteristics in the region used in this study either used 

monthly or daily time series data, probably due to the 

paucity of data with higher resolution, and this has the 

potential of averaging out low and high wind speed 

events and hence, avoided the deprecation in the accuracy 

of Weibull DF (Oyedepo et al., 2012).  Some studies 

claimed that the Mixture Weibull distribution is superior 

to the traditional two-parameter Weibull DF, especially 

for bi-modal wind regimes (Carta et al., 2009; Celik et 

al., 2010), also, for multi-modal wind regimes (Carta et 

al., 2009), but with the disadvantage of an increased 

number of parameters and model complexity. Maximum 

Entropy Probability-based (MEP) DF has been shown to 

have a comparative advantage over all distributions that 

give a probability of zero for null wind speed (Li & Li, 

2005a). Surface wind speeds are generally low in the 

equatorial region (Milone & William J.F. Wilson, 2008; 

Milone, & Wilson, 2014). Low wind at a measuring 

height of 2 m has been reported for some locations in the 

region (Otunla T.A. & Umoren A.K, 2022). This present 

study aims to assess both wind and turbine characteristics 

in many locations in the same region from high-

resolution time series data using both MEP and two-

parameter Weibull DFs. 
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MATERIALS AND METHODS 

Regions of Study and Data 

Eight locations within the major climate zones in the 

equatorial region of West Africa were used in the study. 

Four of the locations: Akure, Akungba, Anyigba, and 

Nsukka were within the Transitional Equatorial Zone, 

three locations: Lapai, Abuja, and Makurdi were in the 

Transitional Tropical Zone, and one location: Yola, was 

in the Pure Tropical Zone (Figure 1). The choice of each 

location was not only based on climate representativeness 

and data availability, but some of them were also within 

the same state/province where hydropower plants were 

sited. For example, the Kanji hydropower plant and Lapai 

are both in Niger state, while the Jebba hydropower plant 

and Anyigba are both in Kogi state. Table 1 gives the 

climate, the coordinates, the altitudes, and the wind data 

time series duration for all the locations. The study 

locations have two predominant climatic conditions, 

namely, rainy and dry seasons. The rainy season 

commenced around March/April with convective 

rainfall, characterized by wind gusts and intense 

monsoon rainfall that follows in June and July. A 

cessation or a lower rainfall amount is usually observed 

down south, locally known as the August break or the 

little dry season, and finally, thunderstorms set in 

September/October as the dry season approaches. The 

dry season is characterized by intense sunshine with little 

or no rainfall between the months of November and 

March of the following year (Akpinar & Akpinar, 2004). 

The wind in December and January is usually dry, cold, 

and gusty, especially when the Northeasterly wind is 

intense.  

 

Figure 1: Map of Nigeria showing the spread of the study locations: Abuja, Akure, Lapai, Makurdi, Anyigba, 

Akungba, Yola, and Nsukka across various climatic zones 

 

Time series data of wind speed of the duration specified 

Table 1 were obtained from the TRODAN data sets 

situated in the Centre for Atmospheric Research and 

Development Agency (CAR-NSRDA) in Nigeria and 

used in this study. The duration of the datasets was 

carefully selected for each location to avoid any 

significant data gaps. Notwithstanding, the data for some 

of the locations did not start in January of the beginning 

year nor end in December of the end year. Measurements 

were originally taken in five-minute intervals using 

anemometers and logged and stored using Campbell 

Scientific. The hourly time resolution of wind data 

commonly used in wind energy assessment (Kavak 

Akpinar & Akpinar, 2005) was obtained from these five-

minute averaged records. The wind speed data, which 

were originally measured and recorded at 2 m above the 

ground level, were extrapolated to a wind turbine hub 

height of 73 m using the power law (Peterson & 

Hennessey, 1978; Ramírez & Carta, 2005): 
v

vh
= (

H

h
)
α

     (1) 

Where v and vh are wind speeds at 73 m and 2 m above 

the ground, H and h are the extrapolated height of 73 m 

and the measurement height of 2 m respectively. α is the 

surface roughness coefficient, and it is usually taken to 

be 1/7, but to reflect its dependence on wind hub height, 

it can be determined from (Ucar & Balo, 2009)? 

α=
0.37-0.088lnVh

(1-0.088ln⁡(
h

H
)
    (2) 
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Table 1: Climate zone, Latitude, Longitude, Altitude, and Time Duration at the study locations  

Climate Zone Locations Latitiude(degN) Longitude(degE) Altitude(m) Time Duration 

Transitional Equatorial Akungba 6.984 5.599 175 2008-2011 

 Akure 6.958 4.605 131 2010-2011 

 Nsukka 6.883 7.433 359 2007-2013 

 Ayingba 7.25 7.183 420 2010-2013 

Transitional Tropical Lapai 9.122 6.898 442 2011-2012 

 Abuja 9.067 7.483 536 2007-2012 

 Makurdi 7.372 8.812 140 2008-2011 

Pure Tropical Yola 9.293 12.391 260 2009-2013 

 

Mathematical Analysis 

Probability Density Functions 

The probability of wind speed of particular value 

occurring at a location is modeled mathematically using 

probability density functions such as two-parameter 

Weibull (Okeniyi et al., 2015; Dorvlo, 2002; Li & Li, 

2004; Akpinar & Akpinar, 2004; Kavak Akpinar & 

Akpinar, 2005, Rayleigh (Kavak Akpinar & Akpinar, 

2005), Gumbel (Okeniyi et al., 2015), lognormal 

(AKYUZ & GAMGAM, 2017, Maximum Entropy 

Principle-based (MEP) (Li & Li, 2004; Li & Li, 2005a) 

and Gamma DFs (AKYUZ & GAMGAM, 2017). 

Previous studies had shown that both two parameters 

Weibull and Maximum Entropy Principle-based DFs are 

superior to others. The two of them are used in this study.  

Maximum Entropy Principle-based Distribution 

Function 

Jaynes, (1957) developed the concept of information 

entropy originally proposed by Shannon & Weaver, 

(1949) into the Maximum Entropy Principle(MEP). This 

principle can be used to determine the most unbiased 

probability DF for a system when the information 

available is subjected to some constraints (Li & Li, 

2005a). The MEP DF has been widely used to fit the 

distributions of wind speed and some of the locations are 

Algeria (Chellali et al., 2012), Taiwan (Chang, 2011), 

Canada (Li & Li, 2005a) and Turkey (Akpinar & Kavak 

Akpinar, 2007). The entropy of a probability function 

g(x) is given as (Chang, 2011): 

S=-∫ g(x)lng(x)dx   (3) 

Suppose the information available for the physical 

system of interest exists in the form of moments 

ϕ
n
(x),n = 0, 1,…, N with ϕ

0
(x)=1, the most probable 

density function can be found by maximizing the entropy 

in equation (3). 

The (N+1) constraints of the maximum entropy for the 

physical system are given as: 

D(ϕ
n
(x))=∫ ϕ

n
(x)g(x)dx=Ωn ;n=0,1,...,N (4) 

Whereϕ
n
(x),n = 0, 1,…, N with ϕ

0
(x)=1 are the known 

functions for the systems;Ωn,n=0,1,...,Nwith Ω0=1, are 

the expectation data. 

The analytical solution to the maximum entropy problem 

can be written as: 

g(x)=exp⁡(-∑ β
n
ϕ
n
(x)N

n=0 )  (5) 

where β
n
 are Lagrangian multipliers that can be obtained 

by solving the (N+1) nonlinear equations: 

Gn(β)=∫ ϕ
n
(x)exp(-∑ β

n
ϕ
n
(x)dx=Ωn

N
n=0 ; n=0, 1, N (6) 

For the case of wind distribution  ϕ
n
(x)can be taken as 

powers of wind speed (v) such that: 

ϕ
n
(x), =(v)

n
;n= 0, 1,…, N   (7) 

and Ωn ;n=0,1,...,Nwith Ω0=1 are the moments of the 

distribution representing the mean values of n power of 

wind speed observation data and hence, correspondingly, 

g(v), and can be calculated from the wind data as 

(Akpinar & Akpinar, 2004): 

g(x)=exp(-∑ β
n
vmN

n=0 )   (8) 

Details of numerical methods entailed in the calculation 

of Lagrangian multipliers are given in (Saad & Ruai, 

2019). The numerical method was into a Python code to 

generate the necessary Lagrangian multipliers when 

moments of n power of wind speed are supplied. The 

code was used in this study. 

 

The Weibull Distribution Function 

The Weibull two-parameter probability distribution 

function (Weibull DF) is given as (Akpinar & Akpinar, 

2004; Paul et al., 2012; Okeniyi et al., 2015; Ben et al., 

2021: 

g(v)=
k

c
(
v

c
)
k-1

exp(- (
v

c
)
k

)   (9) 

Where g(v)is the probability of wind speed (v), c is the 

scale parameter (m/s), and k is the dimensionless shape 

parameter. The cumulative density function G(v) is given 

by integral of the probability distribution function g(v) as: 

G(v)=1-exp(- (
v

c
)
k

)   (10) 

The Weibull shape and scale parameters are given 

as(Justus et al., 1978; Ouammi et al., 2010): 

k= (
σ

vm
)

-1.086

    (11) 

c=
vm

Γ(1+
1

k
)
     (12) 

Where σ and  vm are the standard deviations and the first 

moment of the wind speed data set, respectively. σis 

gamma function defined as (Chang et al., 2003)? 

Γ(x)=∫ tx-1e-tdt
∞

0
    (13) 
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Wind Turbine Characteristics 

The energy generated by an ideal wind turbine is given 

as (Chang et al., 2003): 

Eti=T ∫ P(v)g(v)dv=T (∫ P(v)g(v)+
vR

vi
∫ PRg(v)
vc

vR
)

∞

0
 (14) 

where P(v)=0.5ρAv3, PR=0.5ρAvR
3  , and T is the time 

duration of the turbine operation. 

The wind power density for probability DF is: 

P A=(∫ P(v)g(v)dv
∞

0
)/A⁄    (15) 

Where A is the area swept by the rotor of the turbine and 

ρ is the air density at the turbine hub height given as 

ρ=ρ
0
+10-10×H*. Where  ρ

0
is the air density at sea level 

and H* is the hub height. 

A 3.4M104 S104/3400 wind turbine machine was used 

in this study as a test case. It operates at increasing power 

between cut-in wind speed (vi) 3.5 m/s and rated 

speed(vR) 14 m/s, and at constant power PR=3400 kW 

with maximum efficiency between the rated speed, and 

cut-out speed(vC) 25 m/s. The actual wind power output 

from the wind turbine PT is determined by the turbine 

performance curve, which is well described by the 

following expression: 

PT={

0,                                                                       v<vi

(a
0 
v3+a1 v

2+a2 v+a3)PR,        vi≤v<vR

0,                                                                         v≥vc

}  

     (16) 

Where a0=-0.0023, a1=0.0619, a2=-0.397 and a3=0.7739 

are the regression coefficients for the turbine 

performance curve. The actual wind energy from the 

turbine can be determined from: 
Eta=∫ PT(v)g(v)dv=TPR ∫ (a

0 
v3+a1 v

2+a2 v+a3)g(v)dv
vc

vi
+TPR ∫ g(v)dv

vc

vR

vc

vi

     (17) 

Three complementary but fundamental turbine 

characteristics that are used in this study are Turbine 

Efficiency, Availability, and Capacity Factors. Chang 

(Chang et al., 2003) defined them as: 

Turbine Efficiency, eff, is the ratio of actual energy 

produced by a wind turbine to the energy generated by an 

ideal wind turbine. It is given as: 

eff=
Eta

Eti
     (18) 

 

The Capacity Factor, CF, is the ratio of actual energy 

output by a wind turbine to the rated energy. The rated 

energy for a turbine operating at full capacity for a 

duration T is EtR=TPR. Hence,  

CF=
Eta

EtR
     (19) 

The Availability Factor, AF, is the fraction of time the 

wind turbine is operating. It is given as the probability 

p(vi≤v<vc)and hence: 

AF=p(vi≤v<vc)=∫ g(v)dv
vc

vi
   (20) 

The integrals in equations 14, 15, 17, and 20 were 

calculated by implementing the Gauss-Legendre 

quadrature in Python coding. 

Test of goodness of fit 

The coefficient of determination (R2) is used to evaluate 

the performance of both Weibull and MEP DFs against 

the measured data. The higher the R2, the better the fit 

between measured data and theoretical distributions.  The 

R2 is given as: 

R2=1-
σx,y

2

σy
2     (21) 

Where σ,y
2 is the variance of measured data from mean 

value and σx,y
2  is the covariance. 

To further evaluate the performance of the distribution 

functions, mean bias error (MBE) and root mean square 

error (RMSE) were also introduced. The smaller the 

values of the RMSE parameter, the better the proposed 

distribution function approximates the measured data. 

The sign of MBE indicates over-estimation or 

underestimation of the measured data by the DF 

functions. The expression for RMSE and MBE are given 

as: 

MBE=
1

N
∑ (y-y

m
)    (22) 

RMSE=√
1

N
∑(y-y

m
)

2
   (23) 

Where y and ym are the measured and model values 

respectively. N is the number of data points. 

 

RESULTS AND DISCUSSION 

Annual and Seasonal Assessment of Wind and 

Turbine Characteristics  

The potentials of both Weibull and MEP DFs to model 

wind speed distributions in all the locations of the study 

were compared on the annual, rainy, and dry season time 

scales (Figures 2-4 and Table 2). Figures 2-4 indicated 

similar wind distribution patterns on annual, rainy, and 

dry season time scales for all the locations used in the 

study except Akure, Makurdi, Akangba, and Nsukka in 

the dry season. Diurnal and seasonal effects, which 

usually manifest in the form of nullity and bimodality in 

wind speed and distribution, were observed in all the 

locations used in the study except in Lapai and 

Anyigba(Figures 2-4) as pointed out by Yürüşen & 

Melero, (2016). Abuja had the highest amount of null 

wind and was poorly modeled by Weibull DF when 

compared with MEP DF. Takle & Brown, (1978) and 

Chang (Chang, 2011) had already pointed out that the 

two-parameter Weibull DF may not be suitable for 

modeling wind speed distribution when the percentage of 

null wind speed is high. Bimodality was significantly 

present in the wind distributions, especially in Akure, 

Makurdi, Akungba, and Nsukka during the dry season 

period, and this could be responsible for the poor 

performance of Weibull DF (Carta & Ramírez, 2007; Li 

& Li, 2005b). The two DFs modeled both the annual and 

rainy season periods better than the dry season (Table 2). 

The MEP DF generally outperformed the Weibull DF 

with higher values of R2 and lower values of RMSE. The 

RMSE values were almost an order of magnitude lower 
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in Abuja, Makurdi, Akungba, and Nsukka, irrespective of 

the symmetry and asymmetry of the distribution 

histograms and regardless of whether they are unimodal 

or bimodal. The lowest values of R2=0.83 and R2=0.47 

were obtained during the dry season for the MEP and 

Weibull DFs at Makurdi, respectively.  

Tables 3-5 gave the annual wind and turbine 

characteristics computed from Weibull and MEP DFs 

distributions. As would be expected, the values of both 

the wind speeds and Power Density (P/A) were very close 

for the two DFs in Lapai and Anyigba, where null wind 

and bi-modality were very low, and the values were far 

apart as the nullity and bi-modality in the wind 

distributions increased in Abuja, Nsukka, and Makurdi 

(Jaramillo & Borja, 2004; Li & Li, 2005b; Carta & 

Ramírez, 2007). The Turbine Efficiency and Availability 

Factor were higher and possibly over-estimated while the 

Capacity Factor was lower and possibly under-estimated 

in the Weibull DF when compared with MEP DF, which 

have higher R2 and lower RMSE values, especially in 

locations with higher nullity and bimodality. 

 Tables 4-6 indicated that, on both annual and seasonal 

time scales, the wind was generally available in all the 

locations, with the lowest value of Availability Factor 

(0.733) in Abuja and the highest value (0.970) in 

Anyigba. Tables 4-6 further indicated that Turbine 

Efficiency has its lowest value (0.284) in Akungba during 

the rainy season and its highest value (0.352) in Abuja 

during the rainy season. The values of the Capacity 

Factor ranged between 0.35 (Abuja) and 0.778 (Anyigba) 

and were reciprocal to the values of Turbine Efficiency. 

This implied that the values of the former were high when 

the values of the latter were low. The Tables further show 

that Availability and Capacity Factors were generally 

higher in the rainy season, while Turbine Efficiency was 

very close in the two seasons. The values of wind power 

density (P/A), a measure of the potential of wind for wind 

energy prospecting, were higher in the rainy season than 

in the dry season (Table 6). 

 

Table 2: Root Mean Square Error (RMSE)and Coefficient of Determination (R2) for Annual, Rainy, and Dry 

Season Time Scale of Weibull and Maximum Entropy Principle-based (MEP) distribution functions 

respectively, at the study locations  

Location Time Scale Weibull Maximum Entropy 

RMSE(ms-2) R2 RMSE(ms-2) R2 

Abuja Annual 0.016 0.78 0.0044 0.98 

 Rainy 0.0156 0.78 0.0047 0.98 

 Dry 0.0168 0.91 0.0041 0.95 

Makurdi Annual 0.0144 0.77 0.0086 0.91 

 Rainy 0.0091 0.91 0.0065 0.95 

 Dry 0.0211 0.47 0.0109 0.83 

Akure Annual 0.0093 0.9 0.0057 0.96 

 Rainy 0.0065 0.95 0.0054 0.97 

 Dry 0.0145 0.75 0.0066 0.94 

Akungba Annual 0.0106 0.81 0.0047 0.96 

 Rainy 0.0082 0.88 0.0037 0.97 

 Dry 0.0191 0.47 0.0082 0.88 

Nsukka Annual 0.0135 0.76 0.005 0.97 

 Rainy 0.0125 0.81 0.005 0.97 

 Dry 0.0154 0.64 0.0055 0.95 

Lapai Annual 0.0038 0.98 0.004 0.98 

 Rainy 0.0041 0.98 0.005 0.97 

 Dry 0.005 0.96 0.0038 0.98 

Anyigba Annual 0.0053 0.96 0.0046 0.97 

 Rainy 0.0056 0.96 0.0049 0.97 

 Dry 0.0053 0.96 0.0045 0.97 

Yola Annual 0.0089 0.9 0.0048 0.97 

 Rainy 0.0072 0.93 0.0051 0.97 

  Dry 0.0114 0.86 0.0061 0.96 
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Figure 2: Annual probability distribution of actual data, the Weibull distribution and 

Maximum Entropy principle-based distribution for Abuja, Akure, Lapai, Makurdi, 

Anyigba,Akungba,Yola and Nsukka 

 

 
Figure 3: Rainy Season probability distribution of actual data, the Weibull distribution and 

Maximum Entropy principle-based distribution for Abuja, Akure, Lapai, Makurdi, 

Anyigba,Akungba, Yola and Nsukka 
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Figure 4: Dry Season probability distribution of actual data, the Weibull distribution and 

Maximum Entropy principle-based distribution for Abuja, Akure, Lapai, Makurdi, 

Anyigba, Akungba, Yola and Nsukka 

 

Table 3: Annual wind characteristics and wind turbine characteristics from Weibull two- parameter 

distribution function the study locations 

 K C(m/s) V(m/s) P/A(W/m) Eti(kWh) Eta eff AF CF 

Nsukka 11.4 2.3 12.82 835.4 6.22E+07 1.93E+07 0.31 0.941 0.647 

Akure 11.7 2.65 13.14 921.3 6.86E+07 2.07E+07 0.302 0.966 0.696 

Akungba 11.8 2.11 13.29 853.1 6.35E+07 1.90E+07 0.299 0.92 0.637 

Ayingba 12.8 2.67 14.28 990.5 7.37E+07 2.21E+07 0.3 0.965 0.741 

Makurdi 9.5 2.08 10.78 655.7 4.88E+07 1.57E+07 0.322 0.905 0.528 

Abuja 7.2 1.65 8.03 380.4 2.83E+07 1.01E+07 0.358 0.773 0.34 

LApai 12.3 2.46 13.89 923.5 6.87E+07 2.09E+07 0.304 0.953 0.702 

Yola 9.5 2 10.71 638.2 4.75E+07 1.54E+07 0.325 0.894 0.517 

 

Table 4: Annual wind turbine characteristics from Maximum Entropy Principle)-based (MEP) distribution 

function at the study locations 

Location Multiplier P/A(W/m2) Eti(kWh) Eta(kWh eff AF CF 

Nsukka -3.9992 928.9 6.91E+07 2.03E+07 0.294 0.899 0.682 

 0.4166       

 -0.0979       

 0.01104       

 -0.00051       

 0.000007       

Akure -5.0763 973.9 7.25E+07 2.12E+07 0.293 0.944 0.713 

 0.6858       

 -0.1076       

 0.00997       

 -0.00043       

 0.000006       

Akungba -4.7918 920.8 6.85E+07 1.95E+07 0.284 0.906 0.654 

 0.8878       

 -0.1626       

 0.01352       
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 -0.0005       

 0.000006       

Ayingba -5.4063 1008.1 7.50E+07 2.23E+07 0.298 0.955 0.75 

 0.4478       

 -0.0179       

 0.00001       

 

Table 5: Annual wind turbine characteristics from Maximum Entropy Principle-based (MEP) distribution 

function at the study locations 

Location Multiplier P/A(w/m) Eti(kWh) Eta(kWh eff AF CF 

Makurdi -4.4155 724 5.39E+07 1.65E+07 0.307 0.868 0.555 

 0.991       

 -0.2192       

 0.0215       

 -0.00092       

 0.000013       

Abuja -2.6949 411..8 3.06E+07 1.09E+07 0.357 0.749 0.367 

 0.0355       

 0.0011       

 -0.00055       

Lapai -5.5915 917.6 6.83E+07 2.10E+07 0.307 0.946 0.704 

 0.5886       

 -0.033       

 0.00041       

Yola -3.6989 670.4 4.99E+07 1.06E+07 0.321 0.872 0.537 

 0.2337       

 -0.0114       

 -0.00012       

 

Table 6: Seasonal wind characteristics and wind turbine characteristics from Maximum Entropy Principle-

based (MEP) distribution function at the study locations 

Location Season V(m/s) P/A(W/m) Eti(kWh) Eta eff AF CF 

Nsukka Dry 10.3 855.6 2.62E+07 7.74E+07 0.296 0.874 0.633 

 Rainy 11.8 982.5 4.21E+07 1.23E+07 0.292 0.917 0.717 

Akure Dry 10.6 855.8 2.62E+07 7.81E+07 0.298 0.908 0.638 

 Rainy 12.2 1037.9 4.45E+07 1.29E+07 0.291 0.962 0.754 

Akungba Dry 10 758.7 2.32E+07 6.61E+07 0.285 0.845 0.54 

 Rainy 12.3 974.3 4.17E+07 1.18E+07 0.284 0.923 0.691 

Ayingba Dry 12.7 966.7 2.96E+07 8.78E+07 0.297 0.934 0.717 

 Rainy 12.8 1046.1 4.48E+07 1.33E+07 0.298 0.97 0.778 

Makurdi Dry 9 674.7 2.06E+07 6.25E+07 0.303 0.823 0.511 

 Rainy 10.1 777.2 3.33E+07 1.03E+07 0.311 0.913 0.603 

Abuja Dry 6.9 397.9 1.22E+07 4.28E+07 0.352 0.733 0.35 

 Rainy 7.4 442.5 1.90E+07 6.51E+07 0.343 0.76 0.379 

Lapai Dry 12.5 936.9 2.86E+07 8.59E+07 0.3 0.94 0.701 

 Rainy 12.1 937.2 4.02E+07 1.21E+07 0.301 0.95 0.706 

Yola Dry 8.9 608.2 1.86E+07 6.12E+07 0.329 0.851 0.5 

 Rainy 10.2 744.8 3.19E+07 9.99E+07 0.313 0.894 0.583 

 

Monthly Assessment of Wind and Turbine 

Characteristics 

The monthly wind characteristics, as typified by wind 

power density (P/A) and three fundamental wind turbine 

characteristics: Turbine Efficiency, Capacity Factor, and 

Availability Factor, were further analyzed for all the 

locations to investigate their temporal and spatial 

variations on a monthly time scale in and across the 

climate zones. Figure 5a-d showed the monthly 
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variations of Turbine Efficiency, Capacity Factor, and 

Availability Factor for all the locations used in the study.  

The Turbine Efficiency tends to indicate a similar trend 

within the same climate zones, with values that were very 

close for locations within the Transitional Equatorial 

zone. The range of values for Turbine Efficiency was: 

0.275 - 0.318, 0.282 - 0.382, and 0.302 - 0.350 for 

Transitional Equatorial, Transitional Tropical, and Pure 

Tropical zones, respectively (Figure 5a). The Availability 

Factor indicated that wind was generally available in all 

the climate zones, with the lowest value (0.67) in January 

and the highest value (0.992) in March, both of them in 

the Transitional Equatorial zone (Figure 5b). Lesser 

variations in values of the Availability Factor were 

indicated for rainy season months, especially if Abuja in 

the Transitional Tropical zone was to be excluded.  

The trend of the Capacity Factor was the same as that of 

wind characteristics, as typified by Power Density, but 

opposite to that of Turbine Efficiency in all the climate 

zones (Figures a,c-d). This was also in agreement with 

Chang et al., (2003), who reported opposite trends for 

both Turbine Efficiency and Capacity Factor for the work 

that was carried out in Taiwan. The locations in the 

Transitional Equatorial zone generated the highest wind 

Power Density for each month, with values that were 

very close for all the locations and for most of the 

months. As already reported in Ben et al., (2021) for 

some of the locations used in this study, the Power 

Density peaked in March and April, and also in the 

Transitional Equatorial zone. The range of values for 

Capacity Factor was: 0.571 - 0.903, 0.276 - 0.765, and 

0.449 - 0.662 for Transitional Equatorial, Transitional 

Tropical, and Pure Tropical zones, respectively (Figure 

5c). Thus, indicating more and sufficient wind speed at 

the rated power for the wind turbine in the Transitional 

Equatorial zone than in the other zones. However, it 

should be noted that only one location is used to 

characterise the Pure Tropical zone. The results could 

therefore be significantly different as more locations are 

used for the zone. Notwithstanding, the values of the 

Turbine Efficiency, Availability Factor, Capacity Factor, 

and Power Density in all the zones indicated that wind 

was generally available for wind energy extraction in the 

region of study.  

 

 
Figure 5: Monthly Turbine Efficiency, Availability Factor, Capacity Factor, and Power Density 

using Maximum Entropy principle-based distribution for Abuja, Lapai, Makurdi, Anyigba, 

Akungba, Yola and Nsukka 

 

CONCLUSION  

Hourly mean wind speed data for periods ranging from 

two to seven years in eight locations that cut across 

different climate zones in an equatorial region of West 

Africa have been analyzed and used to assess wind 

characteristics such as nullity and modality in the speed 

and distributions of wind, respectively. The wind 

distributions and power densities in all the locations used 

in the study were modeled using two parameters: Weibull 

and Maximum Entropy Principle-based distribution 
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functions. The accuracy of the two distribution functions 

was assessed using the coefficient of determination, root 

mean square error, and mean bias error. Furthermore, 

three fundamental wind turbine characteristics: Turbine 

Efficiency, Capacity Factor, and Availability Factor, 

were computed and analyzed for annual, seasonal, and 

monthly time scales. It should however be noted that the 

two to seven years of wind data used in power density 

calculation and turbine characterization is not enough for 

long term trend analysis. Hence, only monthly and 

seasonal changes were examined across the different 

climate zones. The conclusions that were drawn from all 

the analyses are given as follows: 

Diurnal and seasonal effects that manifest in the form of 

null wind speed and bimodality in the distribution were 

observed in Abuja, Akure, Akungba, Nsukka, Makurdi, 

and Yola. 

The results of the assessments of the two distribution 

functions showed that the Maximum Entropy Principle-

based distribution function generated much better results 

than the two-parameter Weibull distribution function, 

especially for locations where null wind speed and bi-

modality were prominent in the wind data distribution. 

The annual and rainy season periods were better modeled 

than the dry season in all the locations. 

The values of the Power Density calculated from the two 

distribution functions were close at Lapai and Anyigba, 

where wind nullity and bi-modality in the distributions of 

actual data were low. The converse is correct for all other 

locations. 

The values of Availability Factor (0.733 - 0.97), Capacity 

Factor (0.350 - 0.778), and Turbine Efficiency (0.284 - 

0.3552) calculated on annual and seasonal time scales 

indicated that wind was generally available in all the 

locations used in the study. 

Using the monthly time scale, the values of the 

Availability Factor indicated that winds were generally 

available in all the climate zones, with the lowest 

Availability Factor value (0.67) and the highest (0.992) 

in January and March, respectively. These values were 

obtained in locations situated in the Transitional 

Equatorial zone. 

The ranges of values of Turbine Efficiency using a 

monthly time scale were: 0.275 - 0.318, 0.282 - 0.382, 

and 0.302 - 0.350 for locations in Transitional Equatorial, 

Transitional Tropical, and Pure Tropical zones, 

respectively. 

The ranges of values of Capacity Factor using a monthly 

time scale were: 0.571 - 0.903, 0.276 - 0.765, and 0.449 

- 0.662 for locations in Transitional Equatorial, 

Transitional Tropical, and Pure Tropical zones, 

respectively. 

Turbine Efficiency, Capacity and Availability factors 

may also depend on the rated power, hub height, cut-in 

and cut-out wind speeds of the turbine, among other 

factors. Hence, type of turbines may also influence these 

values.  

Locations in the Transitional Equatorial zone generated 

the highest wind power density for each month. The 

overall effect of all the turbine characteristics is that 

sufficient winds were available at the rated power for 

energy production in all the climate zones. 

 

ACKNOWLEDGMENT  

The wind data used in the study were provided by the 

Centre for Atmospheric Research, National Space 

Research and Development Agency (CAR-NSRDA), 

Anyigba, Nigeria, through its TRODAN project. 

 

REFERENCES 

Adegbehin, A. B., Yusuf, Y. O., Iguisi, E. O., & Zubairu, 

I. (2016). Reservoir inflow pattern and its effects on 

hydroelectric power generation at the Kainji Dam, Niger 

State, Nigeria. WIT Transactions on Ecology and the 

Environment, 203, 233–244. 

 

Ajayi, O. O., Fagbenle, R. O., Katende, J., Aasa, S. A., & 

Okeniyi, J. O. (2013). Wind profile characteristics and 

turbine performance analysis in Kano, north-western 

Nigeria. International Journal of Energy and 

Environmental Engineering, 4(1), 27. 

https://doi.org/10.1186/2251-6832-4-27 

 

Akpinar, E. Kavak., & Akpinar, S. (2004). Determination 

of the wind energy potential for Maden-Elazig, Turkey. 

Energy Conversion and Management, 45(18-19), 2901–

2914. https://doi.org/10.1016/j.enconman.2003.12.016 

 

Akpinar, S., & Kavak Akpinar, E. (2007). Wind energy 

analysis based on maximum entropy principle (MEP)-

type distribution function. Energy Conversion and 

Management, 48(4), 1140–1149. 

https://doi.org/10.1016/j.enconman.2006.10.004 

 

AKYUZ, H. E., & GAMGAM, H. (2017). Statistical 

Analysis of Wind Speed Data with Weibull, Lognormal 

and Gamma Distributions. Cumhuriyet Science Journal, 

38(4), 68–76. https://doi.org/10.17776/csj.358773 

 

Alrashidi, M., Rahman, S., & Pipattanasomporn, M. 

(2020). Metaheuristic optimization  algorithms to 

estimate statistical distribution parameters for 

characterizing wind speeds. Renewable Energy, 149, 

664–681. https://doi.org/10.1016/j.renene.2019.12.048 

 

Ben, U. C., Akpan, A. E., Mbonu, C. C., & Ufuafuonye, 

C. H. (2021). Integrated technical analysis of wind speed 

data for wind energy potential assessment in parts of 

southern and central Nigeria. Cleaner Engineering and 

Technology, 2, 100049. 

https://doi.org/10.1016/j.clet.2021.100049 

https://doi.org/10.1186/2251-6832-4-27
https://doi.org/10.1016/j.enconman.2003.12.016
https://doi.org/10.1016/j.enconman.2006.10.004
https://doi.org/10.17776/csj.358773
https://doi.org/10.1016/j.renene.2019.12.048
https://doi.org/10.1016/j.clet.2021.100049


Assessment of Wind Speed Distributions …     Otunla NJP 

119 

 NIGERIAN JOURNAL OF PHYSICS    NJP VOLUME 35(1)      njp.nipngr.org 

 

Carta, J. A., & Ramírez, P. (2007). Use of finite mixture 

distribution models in the analysis of wind energy in the 

Canarian Archipelago. Energy Conversion and 

Management, 48(1), 281–291. 

https://doi.org/10.1016/j.enconman.2006.04.004 

 

Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A 

review of wind speed probability distributions used in 

wind energy analysis. Renewable and Sustainable 

Energy Reviews, 13(5), 933–955. 

https://doi.org/10.1016/j.rser.2008.05.005 

 

Celik, A. N. (2003). Energy output estimation for small-

scale wind power generators using Weibull-

representative wind data. Journal of Wind Engineering 

and Industrial Aerodynamics, 91(5), 693–707. 

https://doi.org/10.1016/s0167-6105(02)00471-3 

 

Celik, A. N., Makkawi, A., & Muneer, T. (2010). Critical 

evaluation of wind speed frequency distribution 

functions. Journal of Renewable and Sustainable Energy, 

2(1), 013102. https://doi.org/10.1063/1.3294127 

 

Chang, T. P. (2011). Estimation of wind energy potential 

using different probability density functions. Applied 

Energy, 88(5), 1848–1856. 

https://doi.org/10.1016/j.apenergy.2010.11.010 

 

Chang, T.-J., Wu, Y.-T., Hsu, H.-Y., Chu, C.-R., & Liao, 

C.-M. (2003). Assessment of wind characteristics and 

wind turbine characteristics in Taiwan. Renewable 

Energy, 28(6), 851–871. https://doi.org/10.1016/s0960-

1481(02)00184-2 

 

Chellali, F., Khellaf, A., Belouchrani, A., & Khanniche, 

R. (2012). A comparison between wind speed 

distributions derived from the maximum entropy 

principle and Weibull distribution. Case of study; six 

regions of Algeria. Renewable and Sustainable Energy 

Reviews, 16(1), 379–385. 

https://doi.org/10.1016/j.rser.2011.08.002 

 

Csereklyei, Z., Rubio, M., & Stern, D. I. (2014). Energy 

and Economic Growth: The Stylized Facts. SSRN 

Electronic Journal, 37. 

https://doi.org/10.2139/ssrn.2734493 

 

Donoghue, H. (2012). 2050 Energy Roadmap: Energy 

Policy & Innovation. European Energy & Climate 

Journal, 2(1), 32–37. 

https://doi.org/10.4337/eecj.2012.01.02 

 

Dorvlo, A. S. S. (2002). Estimating wind speed 

distribution. Energy Conversion and Management, 

43(17), 2311–2318. https://doi.org/10.1016/s0196-

8904(01)00182-0 

 

Europe, W. (2017). Wind energy in Europe: Scenarios for 

2030. Wind Europe: Brussels, Belgium. 

 

Garcia, A., Torres, J. L., Prieto, E., & de Francisco, A. 

(1998). Fitting wind speed distributions: a case study. 

Solar Energy, 62(2), 139–144. 

https://doi.org/10.1016/s0038-092x(97)00116-3 

 

Jaramillo, O. A., & Borja, M. A. (2004). Wind speed 

analysis in La Ventosa, Mexico: a bimodal probability 

distribution case. Renewable Energy, 29(10), 1613–

1630. https://doi.org/10.1016/j.renene.2004.02.001 

 

Jaynes, E. T. (1957). Information Theory and Statistical 

Mechanics. Physical Review, 106(4), 620–630. 

https://doi.org/10.1103/physrev.106.620 

 

Justus, C. G., Hargraves, W. R., Mikhail, A., & Graber, 

D. (1978). Methods for Estimating Wind  Speed 

Frequency Distributions. Journal of Applied 

Meteorology, 17(3), 350–353. 

https://doi.org/10.1175/1520-

0450(1978)017%3C0350:mfewsf%3E2.0.co;2 

 

Kavak Akpinar, E., & Akpinar, S. (2005). A statistical 

analysis of wind speed data used in installation of wind 

energy conversion systems. Energy Conversion and 

Management, 46(4), 515–532. 

https://doi.org/10.1016/j.enconman.2004.05.002 

 

Ladokun, L. L., Sule, B. F., Ajao, K. R., & Adeogun, A. 

G. (2018). Resource assessment and feasibility study for 

the generation of hydrokinetic power in the tailwaters of 

selected hydropower stations in Nigeria. Water Science, 

32(2), 338–354. 

https://doi.org/10.1016/j.wsj.2018.05.003 

 

Li, M., & Li, X. (2004). On the probabilistic distribution 

of wind speeds: theoretical development and comparison 

with data. International Journal of Exergy, 1(2), 237–

237. https://doi.org/10.1504/ijex.2004.005096 

 

Li, M., & Li, X. (2005a). Investigation of wind 

characteristics and assessment of wind energy potential 

for Waterloo region, Canada. Energy Conversion and 

Management, 46(18-19), 3014–3033. 

https://doi.org/10.1016/j.enconman.2005.02.011 

 

Li, M., & Li, X. (2005b). MEP-type distribution function: 

a better alternative to Weibull function for wind speed 

distributions. Renewable Energy, 30(8), 1221–1240. 

https://doi.org/10.1016/j.renene.2004.10.003 

 

https://doi.org/10.1016/j.enconman.2006.04.004
https://doi.org/10.1016/j.rser.2008.05.005
https://doi.org/10.1016/s0167-6105(02)00471-3
https://doi.org/10.1063/1.3294127
https://doi.org/10.1016/j.apenergy.2010.11.010
https://doi.org/10.1016/s0960-1481(02)00184-2
https://doi.org/10.1016/s0960-1481(02)00184-2
https://doi.org/10.1016/j.rser.2011.08.002
https://doi.org/10.2139/ssrn.2734493
https://doi.org/10.4337/eecj.2012.01.02
https://doi.org/10.1016/s0196-8904(01)00182-0
https://doi.org/10.1016/s0196-8904(01)00182-0
https://doi.org/10.1016/s0038-092x(97)00116-3
https://doi.org/10.1016/j.renene.2004.02.001
https://doi.org/10.1103/physrev.106.620
https://doi.org/10.1175/1520-0450(1978)017%3C0350:mfewsf%3E2.0.co;2
https://doi.org/10.1175/1520-0450(1978)017%3C0350:mfewsf%3E2.0.co;2
https://doi.org/10.1016/j.enconman.2004.05.002
https://doi.org/10.1016/j.wsj.2018.05.003
https://doi.org/10.1504/ijex.2004.005096
https://doi.org/10.1016/j.enconman.2005.02.011
https://doi.org/10.1016/j.renene.2004.10.003


Assessment of Wind Speed Distributions …     Otunla NJP 

120 

 NIGERIAN JOURNAL OF PHYSICS    NJP VOLUME 35(1)      njp.nipngr.org 

Milone, E. F., & Wilson, W. J. (2014). Planetary 

atmospheres, Solar System Astrophysics.: Planetary 

Atmospheres and the Outer Solar System, 337–397. 

 

Milone, E. F., & William J.F. Wilson. (2008). Solar 

System Astrophysics. Springer Science & Business 

Media. 

 

Okeniyi, J. O., Ohunakin, O. S., & Okeniyi, E. T. (2015). 

Assessments of Wind-Energy Potential in Selected Sites 

from Three Geopolitical Zones in Nigeria: Implications 

for Renewable/Sustainable Rural Electrification. The 

Scientific World Journal, 2015, 1–13. 

https://doi.org/10.1155/2015/581679 

 

Olaniyi, A. M., Okesiji, S. O., & Akinbamilowo, O. L. 

(2025). Renewable Energy Policies for Addressing 

Energy Poverty and Mitigating Climate Change in Sub-

Saharan Africa. Sustainability and Climate Change, 3. 

https://doi.org/10.1089/scc.2025.0011 

 

Okpala, C.N., Tijani,B.I., & Yohanna,A.(2026). A 

machine Learning-Based Adaptive Framework for Wind 

Energy Potential Assessment across Nigeria’s Climate 

Zones. Nigerian Journal of Physics, 35(1), 1-7.  

https://doi.org/10.62292/njp.v35i1.2026.474 

 

Otunla T.A., & Umoren A.K. (2022). Wind 

Characteristics and Potentials of Two-Parameter Weibull 

Distribution and Maximum Entropy-Based Distribution 

Functions at an Equatorial Location. Journal of Science 

and Technology, 14(2). 

https://doi.org/10.30880/jst.2022.14.02.005 

 

Otunla, T. A. (2019). Estimation of daily solar radiation 

at equatorial region of West Africa using a more 

generalized Ȧngström-based broadband hybrid model. 

Meteorology and Atmospheric Physics, 132(3), 341–351. 

https://doi.org/10.1007/s00703-019-00691-8 

 

Otunla, T. A., & Kolebaje, O. T. (2015). Assessing the 

performance of global solar radiation empirical models at 

a Sahelian Site, Sokoto, Nigeria. Journal of the Nigerian 

Association of Mathematical Physics, 30, 489–496. 

 

Ouammi, A., Dagdougui, H., Sacile, R., & Mimet, A. 

(2010). Monthly and seasonal assessment of wind energy 

characteristics at four monitored locations in Liguria 

region (Italy). Renewable and Sustainable Energy 

Reviews, 14(7), 1959–1968. 

https://doi.org/10.1016/j.rser.2010.04.015 

 

Oyedepo, S. O., Adaramola, M. S., & Paul, S. S. (2012). 

Analysis of wind speed data and wind energy potential in 

three selected locations in south-east Nigeria. 

International Journal of Energy and Environmental 

Engineering, 3(1), 7. https://doi.org/10.1186/2251-6832-

3-7 

 

Paul, S. S., Oyedepo, S. O., & Adaramola, M. S. (2012). 

Economic Assessment of Water  Pumping Systems 

Using Wind Energy Conversion Systems in the Southern 

Part of Nigeria. Energy Exploration & Exploitation, 

30(1), 1–17. https://doi.org/10.1260/0144-5987.30.1.1 

 

Peterson, E. W., & Hennessey, J. P. (1978). On the Use 

of Power Laws for Estimates of Wind Power Potential. 

Journal of Applied Meteorology, 17(3), 390–394. 

https://doi.org/10.1175/1520-

0450(1978)017%3C0390:otuopl%3E2.0.co;2 

 

Ramírez, P., & Carta, J. A. (2005). Influence of the data 

sampling interval in the estimation of the parameters of 

the Weibull wind speed probability density distribution: 

a case study. Energy Conversion and Management, 

46(15-16), 2419–2438. 

https://doi.org/10.1016/j.enconman.2004.11.004 

 

Saad, T., & Ruai, G. (2019). PyMaxEnt: A Python 

software for maximum entropy moment reconstruction. 

SoftwareX, 10, 100353. 

https://doi.org/10.1016/j.softx.2019.100353 

 

Shannon, C. E., & Weaver, W. (1949). The Mathematical 

Theory of Communication. The Mathematical Gazette, 

34(310), 312. https://doi.org/10.2307/3611062 

 

Takle, E. S., & Brown, J. M. (1978). Note on the Use of 

Weibull Statistics to Characterize Wind-Speed Data. 

Journal of Applied Meteorology, 17(4), 556–559. 

https://doi.org/10.1175/1520-

0450(1978)017%3C0556:notuow%3E2.0.co;2 

 

Ucar, A., & Balo, F. (2009). Evaluation of wind energy 

potential and electricity generation at six locations in 

Turkey. Applied Energy, 86(10), 1864–1872. 

https://doi.org/10.1016/j.apenergy.2008.12.016 

 

Weibull, W. (1951). A Statistical Distribution Function 

of Wide Applicability. Journal of Applied Mechanics, 

18(3), 293–297. https://doi.org/10.1115/1.4010337 

 

Yürüşen, N. Y., & Melero, J. J. (2016). Probability 

density function selection based on the characteristics of 

wind speed data. Journal of Physics: Conference Series, 

753, 032067. https://doi.org/10.1088/1742-

6596/753/3/032067 

 

https://doi.org/10.1155/2015/581679
https://doi.org/10.1089/scc.2025.0011
https://doi.org/10.62292/njp.v35i1.2026.474
https://doi.org/10.30880/jst.2022.14.02.005
https://doi.org/10.1007/s00703-019-00691-8
https://doi.org/10.1016/j.rser.2010.04.015
https://doi.org/10.1186/2251-6832-3-7
https://doi.org/10.1186/2251-6832-3-7
https://doi.org/10.1260/0144-5987.30.1.1
https://doi.org/10.1175/1520-0450(1978)017%3C0390:otuopl%3E2.0.co;2
https://doi.org/10.1175/1520-0450(1978)017%3C0390:otuopl%3E2.0.co;2
https://doi.org/10.1016/j.enconman.2004.11.004
https://doi.org/10.1016/j.softx.2019.100353
https://doi.org/10.2307/3611062
https://doi.org/10.1175/1520-0450(1978)017%3C0556:notuow%3E2.0.co;2
https://doi.org/10.1175/1520-0450(1978)017%3C0556:notuow%3E2.0.co;2
https://doi.org/10.1016/j.apenergy.2008.12.016
https://doi.org/10.1115/1.4010337
https://doi.org/10.1088/1742-6596/753/3/032067
https://doi.org/10.1088/1742-6596/753/3/032067

